Chronic drug exposure induces alterations in gene expression profiles that are thought to underlie the development of drug addiction. The present study examined regulation of the Fos-family of transcription factors, specifically cFos, FosB, and ΔFosB, in striatal subregions during and after chronic
intravenous cocaine administration in self-administering and yoked rats. We found that cFos, FosB, and ΔFosB exhibit regionally and temporally distinct expression patterns, with greater accumulation of ΔFosB protein in the nucleus accumbens (NAc) shell and core after chronic cocaine administration, whereas ΔFosB increases in the caudate-putamen (CPu) remained similar with either acute or chronic administration. In contrast, tolerance developed to cocaine-induced mRNA for ΔFosB in all three striatal subregions with chronic administration. Tolerance also developed to FosB expression, most notably in the NAc shell and CPu. Interestingly, tolerance to cocaine-induced cFos induction was dependent on volitional control of cocaine intake in ventral but not dorsal striatal regions, whereas regulation of FosB and ΔFosB was similar in cocaine self-administering and yoked animals. Thus, ΔFosB-mediated neuroadaptations in the CPu may occur earlier than previously thought with the initiation of intravenous cocaine use and, together with greater accumulation of ΔFosB in the NAc, could contribute to addiction-related increases in cocaine-seeking behavior.
Mikalsen B, etal., Am J Transplant. 2010 Jul;10(7):1534-44. doi: 10.1111/j.1600-6143.2010.03157.x.
Transcriptome analyses of organ transplants have until now usually focused on whole tissue samples containing activation profiles from different cell populations. Here, we enriched endothelial cells from rat cardiac allografts and isografts, establishing their activation profile at baseline and on d
ays 2, 3 and 4 after transplantation. Modulated transcripts were assigned to three categories based on their regulation profile in allografts and isografts. Categories A and B contained the majority of transcripts and showed similar regulation in both graft types, appearing to represent responses to surgical trauma. By contrast, category C contained transcripts that were partly allograft-specific and to a large extent associated with interferon-gamma-responsiveness. Several transcripts were verified by immunohistochemical analysis of graft lesions, among them the matricellular protein periostin, which was one of the most highly upregulated transcripts but has not been associated with transplantation previously. In conclusion, the majority of the differentially expressed genes in graft endothelial cells are affected by the transplantation procedure whereas relatively few are associated with allograft rejection.
Cudrici C, etal., J Immunol. 2006 Mar 1;176(5):3173-80.
Activation of the terminal complement cascade involving C5 to C9 proteins has a beneficial role for oligodendrocytes (OLG) in experimental allergic encephalomyelitis, an animal model of multiple sclerosis, by protecting them from apoptotic cell death. We have previously shown that sublytic C5b-9 com
plexes, through posttranslational regulation of Bad, inhibit the mitochondrial pathway of apoptosis induced by serum deprivation. In the present study, we examined the possible involvement of the caspase-8 and Fas pathway in OLG apoptosis and the role of C5b-9 in this process. In a serum-free defined medium, OLG undergo apoptosis and differentiation concomitantly. Under this condition, we found that caspase-8 processing was increased in association with Bid cleavage and markedly reduced expression of cellular FLIP long isoform protein. The caspase-8 inhibitor Z-IETD-FMK inhibited cell death associated with differentiation in a dose-dependent manner. Exposure to C5b-9 induced an inhibition of caspase-8 activation, Bid cleavage, and a significant increase in expression of cellular FLIP long isoform. These C5b-9 effects were reversed by PI3K inhibitor LY294002. C5b-9 also down-regulated the expression of FasL and the Fas-induced apoptosis. These data suggest that C5b-9 through PI3K signaling can rescue OLG from Fas-mediated apoptosis by regulating caspase-8 processing.
Nestler EJ Eur J Pharmacol. 2015 Apr 15;753:66-72. doi: 10.1016/j.ejphar.2014.10.034. Epub 2014 Nov 7.
DeltaFosB is a member of the Fos family of transcription factors. While other family members are induced rapidly but transiently in response to a host of acute stimuli, DeltaFosB is unique in that it accumulates in response to repeated stimulation due to its unusual protein stability. Such prolonged
induction of DeltaFosB, within nucleus accumbens (NAc), a key brain reward region, has been most studied in animal models of drug addiction, with considerable evidence indicating that DeltaFosB promotes reward and motivation and serves as a mechanism of drug sensitization and increased drug self-administration. In more recent years, prolonged induction of FosB has also been observed within NAc in response to chronic administration of certain forms of stress. Increasing evidence indicates that this induction represents a positive, homeostatic adaptation to chronic stress, since overexpression of FosB in this brain region promotes resilience to stress, whereas blockade of its activity promotes stress susceptibility. Chronic administration of several antidepressant medications also induces FosB in the NAc, and this induction is required for the therapeutic-like actions of these drugs in mouse models. Validation of these rodent findings is the demonstration that depressed humans, examined at autopsy, display reduced levels of FosB within the NAc. As a transcription factor, DeltaFosB produces this behavioral phenotype by regulating the expression of specific target genes, which are under current investigation. These studies of DeltaFosB are providing new insight into the molecular basis of depression and antidepressant action, which is defining a host of new targets for possible therapeutic development.
Anders QS, etal., Front Pharmacol. 2018 Oct 24;9:1205. doi: 10.3389/fphar.2018.01205. eCollection 2018.
FosB gene heterodimerizes with Jun family proteins to form activator protein 1 (AP-1) complexes that bind to AP-1 sites in responsive genes to regulate transcription in all cells. The genic expression of FosB seems to be modified after long time exposure to drugs of abuse and these changes may be in
volved in craving and addicted behavior. This study investigated the FosB mRNA expression in peripheral blood lymphocytes of drug addicted patients using real-time PCR approach. Thus, patients with crack-cocaine use disorder (CUD, n = 10), alcohol use disorder (AUD, n = 12), and healthy non-addicted subjects (CONT, n = 12) were assessed. FosB mRNA expression was reduced by 1.15-fold in CUD and 2.17-fold in AUD when compared to CONT. Hedge's effect size gs over log FosB/Act was of 0.66 for CUD and of 0.30 for AUD when compared to controls. This study showed that FosB mRNA expression was detected in lymphocytes from peripheral blood for the first time, and it was less expressed in drug addicted patients. This molecular technique may constitute a potential peripheral marker for substance use disorder.
Wang Y, etal., ACS Chem Neurosci. 2012 Jul 18;3(7):546-56. doi: 10.1021/cn3000235. Epub 2012 Mar 29.
ΔFosB protein accumulates in the striatum in response to chronic administration of drugs of abuse, L-DOPA, or stress, triggering long lasting neural and behavioral changes that underlie aspects of drug addiction, abnormal involuntary movements (dyskinesia), and depression. ΔFosB binds AP-1 DNA conse
nsus sequences found in promoters of many genes and can both repress or activate gene transcription. In the striatum, ΔFosB is thought to dimerize with JunD to form a functional transcription factor, though strikingly JunD does not accumulate in parallel. One explanation is that ΔFosB can recruit different partners, including itself, depending on the neuron type in which it is induced and the chronic stimulus, generating protein complexes with different effects on gene transcription. To develop chemical probes to study ΔFosB, a high-throughput screen was carried out to identify small molecules that modulate ΔFosB function. Two compounds with low micromolar activity, termed C2 and C6, disrupt the binding of ΔFosB to DNA via different mechanisms, and in in vitro assays stimulate ΔFosB-mediated transcription. In cocaine-treated mice, C2 significantly elevates mRNA levels of the AMPA glutamate receptor GluR2 subunit with specificity, a known target gene of ΔFosB that plays a role in drug addiction and endogenous resilience mechanisms. C2 and C6 show different activities against ΔFosB homodimers compared to ΔFosB/JunD heterodimers, suggesting that these compounds can be used as probes to study the contribution of different ΔFosB-containing complexes on the regulation of gene transcription in biological systems and to assess the utility of ΔFosB as a therapeutic target.
Grueter BA, etal., Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1923-8. doi: 10.1073/pnas.1221742110. Epub 2013 Jan 14.
Synaptic modifications in nucleus accumbens (NAc) medium spiny neurons (MSNs) play a key role in adaptive and pathological reward-dependent learning, including maladaptive responses involved in drug addiction. NAc MSNs participate in two parallel circuits, direct and indirect pathways that subserve
distinct behavioral functions. Modification of NAc MSN synapses may occur in part via changes in the transcriptional potential of certain genes in a cell type–specific manner. The transcription factor ∆FosB is one of the key proteins implicated in the gene expression changes in NAc caused by drugs of abuse, yet its effects on synaptic function in NAc MSNs are unknown. Here, we demonstrate that overexpression of ∆FosB decreased excitatory synaptic strength and likely increased silent synapses onto D1 dopamine receptor–expressing direct pathway MSNs in both the NAc shell and core. In contrast, ∆FosB likely decreased silent synapses onto NAc shell, but not core, D2 dopamine receptor–expressing indirect pathway MSNs. Analysis of NAc MSN dendritic spine morphology revealed that ∆FosB increased the density of immature spines in D1 direct but not D2 indirect pathway MSNs. To determine the behavioral consequences of cell type-specific actions of ∆FosB, we selectively overexpressed ∆FosB in D1 direct or D2 indirect MSNs in NAc in vivo and found that direct (but not indirect) pathway MSN expression enhances behavioral responses to cocaine. These results reveal that ∆FosB in NAc differentially modulates synaptic properties and reward-related behaviors in a cell type- and subregion-specific fashion.
The reduction of sleep hours is a public health problem in contemporary society. It is estimated that humans sleep between 1.5 and 2 h less, per night, than 100 years ago. The reduction of sleep hours is a risk factor for developing cardiovascular, metabolic, and psychiatric problems. Previous studi
es have shown that low sleep quality is a factor that favors relapse in addicted patients. In rodents, sleep deprivation increases the preference for methylphenidate and the self-administration of cocaine. However, it is unknown whether chronic sleep restriction induces voluntary alcohol consumption in rats and whether alcohol intake is associated with delta FosB expression in the brain reward circuit. Potentially, chronic sleep restriction could make the brain vulnerable and consequently promote addictive behavior. Therefore, the present study's objective was to evaluate alcohol consumption in a chronic sleep restriction model and determine the expression of delta FosB in brains of adult rats. For this purpose, male Wistar rats (300-350 g body weight) were divided into four experimental groups (n = 6 each group): control (without manipulation), sleep restriction (SR) for 7 days, SR and ethanol exposure (Ethanol + SR), and a group with just ethanol exposure (Ethanol). At the end of the management, rats were sacrificed, and the brains were dissected and processed for immunohistochemical detection of delta FosB. The results showed that SR stimulates alcohol consumption compared to unrestricted-sleep rats and induces a significant increase in the number of delta FosB-positive cells in brain nuclei within the motivation/brain reward circuit. These results suggest that chronic reduction of sleep hours is a risk factor for developing a preference for alcohol consumption.
BACKGROUND: ΔFosB is the best characterized transcription factor induced by chronic stimulation. Although previous studies have demonstrated that chronic passive ethanol exposure alters ΔFosB immunoreactivity (IR), the effect of chronic voluntary ethanol consumption on ΔFosB remains unkno
wn. Furthermore, although previous studies have demonstrated that the opioid antagonist naltrexone reduces alcohol consumption in clinical and preclinical settings, the effect of naltrexone on FosB/ΔFosB has not been explored. Here, we examined the effects of chronic voluntary ethanol intake and naltrexone on FosB/ΔFosB IR in striatal region and prefrontal cortex, and the effect of naltrexone on voluntary ethanol intake. METHODS: We utilized immunohistochemistry to define the changes in FosB/ΔFosB IR induced by chronic voluntary ethanol intake under a two-bottle intermittent access of 20% ethanol model and by systematic administration (intraperitoneal injection) of naltrexone in Sprague-Dawley rats. RESULTS: Chronic (15 drinking sessions in 35 days) voluntary ethanol intake robustly induces FosB/ΔFosB IR in nucleus accumbens core, dorsolateral striatum, and orbitofrontal cortex, but not in nucleus accumbens shell, dorsomedial striatum, and medial prefrontal cortex. Systemic administration of naltrexone for 6 days significantly reduced voluntary ethanol consumption and FosB/ΔFosB IR induced by chronic voluntary ethanol intake. CONCLUSION: Our results suggest that chronic voluntary ethanol intake induces FosB/ΔFosB IR in a subregion-specific manner which involves the activation of endogenous opioid system.
Major depressive disorder is thought to arise in part from dysfunction of the brain's "reward circuitry", consisting of the mesolimbic dopamine system and the glutamatergic and neuromodulatory inputs onto this system. Both chronic stress and antidepressant treatment regulate gene transcription in m
any of the brain regions that make up these circuits, but the exact nature of the transcription factors and target genes involved in these processes remain unclear. Here, we demonstrate induction of the FosB family of transcription factors in approximately 25 distinct regions of adult mouse brain, including many parts of the reward circuitry, by chronic exposure to the antidepressant fluoxetine. We further uncover specific patterns of FosB gene product expression (i.e., differential expression of full-length FosB, DeltaFosB, and Delta2DeltaFosB) in brain regions associated with depression--the nucleus accumbens (NAc), prefrontal cortex (PFC), and hippocampus--in response to chronic fluoxetine treatment, and contrast these patterns with differential induction of FosB isoforms in the chronic social defeat stress model of depression with and without fluoxetine treatment. We find that chronic fluoxetine, in contrast to stress, causes induction of the unstable full-length FosB isoform in the NAc, PFC, and hippocampus even 24 h following the final injection, indicating that these brain regions may undergo chronic activation when fluoxetine is on board, even in the absence of stress. We also find that only the stable DeltaFosB isoform correlates with behavioral responses to stress. These data suggest that NAc, PFC, and hippocampus may present useful targets for directed intervention in mood disorders (ie, brain stimulation or gene therapy), and that determining the gene targets of FosB-mediated transcription in these brain regions in response to fluoxetine may yield novel inroads for pharmaceutical intervention in depressive disorders.
Drug addiction results in part from maladaptive learning, including the formation of strong associations between the drug and the circumstances of consumption. However, drug-induced changes in gene expression underlying the saliency of these associations remain understudied. Consolidation of explici
t memories occurs within the hippocampus, and we have shown that spatial learning induces expression of the transcription factor ΔFosB in hippocampus and that this induction is critical for learning. Drugs of abuse also upregulate ΔFosB in hippocampus, but the mechanism of its induction by cocaine and its role in hippocampus-dependent cocaine responses is unknown. We investigated differences in mouse dorsal and ventral hippocampal ΔFosB expression in response to chronic cocaine, because these regions appear to regulate distinct cocaine-related behaviors. We found that cocaine-mediated induction of ΔFosB was subregion-specific, and that ΔFosB transcriptional activity in both the dorsal and ventral hippocampus is necessary for cocaine conditioned place preference. Further, we characterize changes in histone modifications at the FosB promoter in hippocampus in response to chronic cocaine and found that locus-specific epigenetic modification is essential for FosB induction and multiple hippocampus-dependent behaviors, including cocaine place preference. Collectively, these findings suggest that exposure to cocaine induces histone modification at the hippocampal FosB gene promoter to cause ΔFosB induction critical for cocaine-related learning.SIGNIFICANCE STATEMENT Although cocaine addiction is driven in part by the formation of indelible associations between the drug and the environment, paraphernalia, and circumstances of use, and although this type of associative learning is dependent upon changes in gene expression in a brain region called the hippocampus, the mechanisms by which cocaine alters hippocampal gene expression to drive formation of these associations is poorly understood. Here, we demonstrate that chronic cocaine engages locus-specific changes in the epigenetic profile of the FosB gene in the hippocampus, and that these alterations are required for cocaine-dependent gene expression and cocaine-environment associations. This work provides novel insight into addiction etiology and potential inroads for therapeutic intervention in cocaine addiction.
BACKGROUND: Sensitivity to reward has been implicated as a predisposing factor for behaviors related to drug abuse as well as overeating. However, the underlying mechanisms contributing to reward sensitivity are unknown. We hypothesized that a dysregulation in dopamine signaling might be
an underlying cause of heightened reward sensitivity whereby rewarding stimuli could act to normalize the system. METHODS: We used a genetic mouse model of increased reward sensitivity, the Delta FosB-overexpressing mouse, to examine reward pathway changes in response to a palatable high-fat diet. Markers of reward signaling in these mice were examined both basally and following 6 weeks of palatable diet exposure. Mice were examined in a behavioral test following high-fat diet withdrawal to assess the vulnerability of this model to removal of rewarding stimuli. RESULTS: Our results demonstrate altered reward pathway activation along the nucleus accumbens-hypothalamic-ventral tegmental area circuitry resulting from overexpression of Delta FosB in the nucleus accumbens and striatal regions. Levels of phosphorylated cyclic adenosine monophosphate (cAMP) response element binding protein (pCREB), brain-derived neurotrophic factor (BDNF), and dopamine and cyclic adenosine monophosphate regulated phosphoprotein with a molecular mass of 32 kDa (DARPP-32) in the nucleus accumbens were reduced in Delta FosB mice, suggestive of reduced dopamine signaling. Six weeks of high-fat diet exposure completely ameliorated these differences, revealing the potent rewarding capacity of a palatable diet. Delta FosB mice also showed a significant increase in locomotor activity and anxiety-related responses 24 hours following high-fat withdrawal. CONCLUSIONS: These results establish an underlying sensitivity to changes in reward related to dysregulation of Delta FosB and dopamine signaling that can be normalized with palatable diets and may be a predisposing phenotype in some forms of obesity.
Feyder M, etal., Biol Psychiatry. 2016 Mar 1;79(5):362-71. doi: 10.1016/j.biopsych.2014.07.019. Epub 2014 Jul 28.
BACKGROUND: Abnormal regulation of extracellular signal-regulated kinases 1 and 2 has been implicated in 3,4-dihydroxy-l-phenylalanine (L-DOPA)-induced dyskinesia (LID), a motor complication affecting Parkinson's disease patients subjected to standard pharmacotherapy. We examined the involvement of
mitogen- and stress-activated kinase 1 (MSK1), a downstream target of extracellular signal-regulated kinases 1 and 2, and an important regulator of transcription in LID. METHODS: 6-Hydroxydopamine was used to produce a model of Parkinson's disease in MSK1 knockout mice and in FosB- or cJun-overexpressing transgenic mice, which were assessed for LID following long-term L-DOPA administration. Biochemical processes were evaluated by Western blotting or immunofluorescence. Histone H3 phosphorylation was analyzed by chromatin immunoprecipitation followed by promotor-specific quantitative polymerase chain reaction. RESULTS: Genetic inactivation of MSK1 attenuated LID and reduced the phosphorylation of histone H3 at Ser10 in the striatum. Chromatin immunoprecipitation analysis showed that this reduction occurred at the level of the fosB gene promoter. In line with this observation, the accumulation of FosB produced by chronic L-DOPA was reduced in MSK1 knockout. Moreover, inducible overexpression of FosB in striatonigral medium spiny neurons exacerbated dyskinetic behavior, whereas overexpression of cJun, which reduces FosB-dependent transcriptional activation, counteracted LID. CONCLUSIONS: Results indicate that abnormal regulation of MSK1 contributes to the development of LID and to the concomitant increase in striatal FosB, which may occur via increased histone H3 phosphorylation at the fosB promoter. Results also show that accumulation of FosB in striatonigral neurons is causally related to the development of dyskinesia.
Sun LM, etal., Zhongguo Zhen Jiu. 2006 Nov;26(11):833-7.
OBJECTIVE: To observe effects of electroacupuncture (EA) of low frequency on heroin-seeking behavior and FosB protein expression in relative brain regions so as to explore the mechanism of EA. METHODS: Rat model of relapsing into heroin was established with progressive fixed rat
io program, and model rats were randomly divided into 3 groups: a "Sanyinjiao" needle-retention control group, a low frequency and weak EA group, and a low frequency and strong EA group. Heroin-seeking behavior was elicited by conditional clue and small dose of heroin; FosB protein expression was investigated with immunohistochemical technique. RESULTS: After treatment, the heroin-seeking behavior induced by conditional clue decreased in the needle-retention control group and the weak EA group, and the heroin-seeking behavior induced by small dose of heroin in the weak EA group significantly reduced as compared with the control group, and FosB protein expression in the nucleus accumbens septi, globus pallidus, basolateral amygdaloid nucleus significantly decreased in the weak EA group, and did not significantly change in the strong EA group; the activity induced by heroin increased as compared with those in the control group and the weak EA group. CONCLUSION: EA of low frequency and low intensity can cure the heroin-seeking behavior, which is correlated with regulating nervous adaptation of nucleus accumbens septi, basolateral amygdaloid nucleus, etc..
Bergman MR, etal., Biochem J 2003 Feb 1;369(Pt 3):485-96.
Enhanced synthesis of a specific matrix metalloproteinase, MMP-2, has been demonstrated in experimental models of ventricular failure and in cardiac extracts from patients with ischaemic cardiomyopathy. Cultured neonatal rat cardiac fibroblasts and myocytes were used to analyse the determinants of M
MP-2 synthesis, including the effects of hypoxia. Culture of rat cardiac fibroblasts for 24 h in 1% oxygen enhanced MMP-2 synthesis by more than 5-fold and augmented the MMP-2 synthetic responses of these cells to endothelin-1, angiotensin II and interleukin 1beta. A series of MMP-2 promoter-luciferase constructs were used to map the specific enhancer element(s) that drive MMP-2 transcription in cardiac cells. Deletion studies mapped a region of potent transactivating function within the 91 bp region from -1433 to -1342 bp, the activity of which was increased by hypoxia. Oligonucleotides from this region were cloned in front of a heterologous simian-virus-40 (SV40) promoter and mapped the enhancer activity to a region between -1410 and -1362 bp that included a potential activating protein 1 (AP-1)-binding sequence, C(-1394)CTGACCTCC. Site-specific mutagenesis of the core TGAC sequence (indicated in bold) eliminated the transactivating activity within the -1410 to -1362 bp sequence. Electrophoretic mobility shift assays (EMSAs) using the -1410 to -1362 bp oligonucleotide and rat cardiac fibroblast nuclear extracts demonstrated specific nuclear-protein binding that was eliminated by cold competitor oligonucleotide, but not by the AP-1-mutated oligonucleotide. Antibody-supershift EMSAs of nuclear extracts from normoxic rat cardiac fibroblasts demonstrated Fra1 and JunB binding to the -1410 to -1362 bp oligonucleotide. Nuclear extracts isolated from hypoxic rat cardiac fibroblasts contained Fra1, JunB and also included FosB. Co-transfection of cardiac fibroblasts with Fra1-JunB and FosB-JunB expression plasmids led to significant increases in transcriptional activity. These studies demonstrate that a functional AP-1 site mediates MMP-2 transcription in cardiac cells through the binding of distinctive Fra1-JunB and FosB-JunB heterodimers. The synthesis of MMP-2 is widely considered, in contrast with many members of the MMP gene family, to be independent of the AP-1 transcriptional complex. This report is the first demonstration that defined members of the Fos and Jun transcription-factor families specifically regulate this gene under conditions relevant to critical pathophysiological processes.
Transcription factor DeltaFosB has been implicated in the psychomotor responses and rewarding effects of drugs of abuse. In the present study, we compared the effects of cocaine on the expression of DeltaFosB-like proteins by immunohistochemistry in striatal brain areas of alcohol-preferring (AA) an
d alcohol-avoiding (ANA) rats. Cocaine was administered using a previously verified treatment paradigm that sensitized the locomotor response to cocaine in AA but not in ANA rats. We also studied the rewarding effects of cocaine with a conditioned place preference (CPP) paradigm in both lines of rats. Cocaine treatment increased the FosB/DeltaFosB immunoreactivity (IR) in the nucleus accumbens of AA rats but not in ANA rats. In addition, after repeated saline injections the accumbal FosB/DeltaFosB IR was significantly greater in saline-injected AA rats than in ANA rats. In the caudate-putamen cocaine significantly increased FosB/DeltaFosB IR, but no differences were found between the rats of two lines. In the CPP experiment, AA rats treated with cocaine 2.5 mg/kg preferred the cocaine-associated compartment, in contrast to ANA rats, which did not show such a preference. In conclusion, our findings show that AA rats are more sensitive to cocaine than ANA rats, and suggest that one possible mediator for this increased sensitivity could be the increased expression of fosB-derived proteins in the nucleus accumbens of AA rats.
Phillips D, etal., Behav Brain Res. 2016 Mar 15;301:238-42. doi: 10.1016/j.bbr.2015.12.035. Epub 2015 Dec 28.
Stereotypic behaviour (SB) occurs in certain human disorders (e.g. autism), and animals treated with stimulants or raised in impoverished conditions, including laboratory mice in standard cages. Dysfunctional cortico-basal ganglia pathways have been implicated in these examples, but for cage-induced
forms of SB, the relative roles of ventral versus dorsal striatum had not been fully ascertained. Here, we used immunohistochemical staining of FosB and DeltaFosB to assess long-term activation within the nucleus accumbens and caudate-putamen of C57BL/6 mice. Housed in typical laboratory cages, these mice spontaneously developed different degrees of route-tracing, bar-mouthing and other forms of SB (spending 0% to over 50% of their active time budgets in this behaviour). The most highly stereotypic mice showed the most elevated FosB/DeltaFosB activity in the nucleus accumbens. No such patterns occurred in the caudate-putamen. The cage-induced SB common in standard-housed mice thus involves elevated activity within the ventral striatum, suggesting an aetiology closer to compulsive gambling, eating and drug-seeking than to classic amphetamine stereotypies and other behaviours induced by motor loop over-activation.
Alfonso-Jaume MA, etal., Am J Physiol Heart Circ Physiol. 2006 Oct;291(4):H1838-46. Epub 2006 May 12.
Matrix metalloproteinase-2 (MMP-2) is a central component of the response to injury in the heart. During ischemia, MMP-2 influences ventricular performance and is a determinant of postinfarction remodeling. Elevation of MMP-2 during reperfusion after ischemia suggests that new protein is synthesized
, but the molecular regulation of MMP-2 generation during ischemia-reperfusion (I/R) injury has not been studied. Using the MMP-2 promoter linked to a beta-galactosidase reporter in transgenic mice, we investigated the transcriptional regulation and cellular sources of MMP-2 in isolated, perfused mouse hearts subjected to acute global I/R injury. I/R injury induced a rapid activation of MMP-2 promoter activity with the appearance of beta-galactosidase antigen in cardiomyocytes, fibroblasts, and endothelial cells. Activation of intrinsic MMP-2 transcription and translation was confirmed by real-time PCR and quantitative Western blot analyses. MMP-2 transcription and translation were inhibited by perfusion with 1.0 mM hydroxyl radical scavenger N-(-2-mercaptopropionyl)-glycine. Nuclear extracts demonstrated increased abundance of two activator proteins-1 (AP-1) components JunB and FosB following I/R injury. Immunohistochemical staining localized JunB and FosB proteins to the nuclei of all three cardiac cell types following I/R injury, consistent with enhanced nuclear transport of these transcription factors. Chromatin immunoprecipitation (ChIP) of the AP-1 binding site in the intrinsic murine MMP-2 promoter yielded only JunB under control conditions, whereas ChIP following I/R injury recovered both JunB and FosB, consistent with a change in occupancy from JunB homodimers in controls to JunB/FosB heterodimers following I/R injury. We conclude that enhanced MMP-2 transcription and translation following I/R injury are mediated by induction, via oxidant stress, of discrete AP-1 transcription factor components.
BACKGROUND: The ability of neurons to respond to external stimuli involves adaptations of gene expression. Induction of the transcription factor ΔFOSB in the nucleus accumbens, a key brain reward region, is important for the development of drug addict
ion. However, a comprehensive map of ΔFOSB's gene targets has not yet been generated. METHODS: We used CUT&RUN (cleavage under targets and release using nuclease) to map the genome-wide changes in ΔFOSB binding in the 2 main types of nucleus accumbens neurons-D1 or D2 medium spiny neurons-after chronic cocaine exposure. To annotate genomic regions of ΔFOSB binding sites, we also examined the distributions of several histone modifications. Resulting datasets were leveraged for multiple bioinformatic analyses. RESULTS: The majority of ΔFOSB peaks occur outside promoter regions, including intergenic regions, and are surrounded by epigenetic marks indicative of active enhancers. BRG1, the core subunit of the SWI/SNF chromatin remodeling complex, overlaps with ΔFOSB peaks, a finding consistent with earlier studies of ΔFOSB's interacting proteins. Chronic cocaine use induces broad changes in ΔFOSB binding in both D1 and D2 nucleus accumbens medium spiny neurons of male and female mice. In addition, in silico analyses predict that ΔFOSB cooperatively regulates gene expression with homeobox and T-box transcription factors. CONCLUSIONS: These novel findings uncover key elements of ΔFOSB's molecular mechanisms in transcriptional regulation at baseline and in response to chronic cocaine exposure. Further characterization of ΔFOSB's collaborative transcriptional and chromatin partners specifically in D1 and D2 medium spiny neurons will reveal a broader picture of the function of ΔFOSB and the molecular basis of drug addiction.
Chronic subcortical hyperdopaminergic activity is associated with the positive symptoms of schizophrenia and is a hallmark feature of a number of animal models of the disorder. However, the molecular changes induced by increased dopaminergic activity associated with schizophrenia are not clear. Incr
eased levels of ¿FosB have been found in association with chronic subcortical hyperdopaminergic activity following repeated cocaine or amphetamine administration. Therefore, we investigated ¿FosB signaling in a putative neurodevelopmental animal model of schizophrenia showing chronic subcortical hyperdopaminergic activity. Increased protein levels of the transcription factor ¿FosB as well as cyclin-dependent kinase-5 (cdk-5), p35, p25 and the GluR2 subunit of the AMPA glutamate receptor were observed in the nucleus accumbens (NA). Cdk-5, p35 and GlurR2 are all proteins regulated by ¿FosB, while p25 is a degradation product of p35. Increased total protein levels of cdk-5, p35 and p25 resulted in increased cdk-5 kinase activity as determined by increased phosphorylation of dopamine and adenosine regulated phosphoprotein-32 (DARPP32) at Thr(75) in the NA. DARPP32 Thr(75) is selectively phosphorylated by cdk-5 and phosphorylation of DARPP32 at Thr(75) suppresses DARPP32 activity, a critical step in the regulation of both glutamatergic and dopaminergic activity in neurons. We also found that apomorphine-induced locomotor activity was further increased following intra-accumbens infusions of roscovitine, a cdk-5 blocker, in a dose-dependent manner. Our results indicate that chronic hyperdopaminergic activity, as seen in schizophrenia, may affect glutamate and dopamine function in the NA via ¿FosB-mediated transcriptional modulation.
Reséndiz-Flores M and Escobar C, Addict Biol. 2019 Nov;24(6):1179-1190. doi: 10.1111/adb.12674. Epub 2018 Oct 8.
Shift-work and exposure to light at night lead to circadian disruption, which favors the use of alcohol and may be a risk factor for development of addictive behavior. This study evaluated in two experimental models of circadian disruption behavioral indicators of elevated alcohol intake and looked
for ΔFosB, which is a transcription factor for neuronal plasticity in corticolimbic structures. Male Wistar rats were exposed to experimental shift-work (AR) or to constant light (LL) and were compared with a control group (LD). After 4 weeks in their corresponding conditions, control LD rats remained rhythmic, AR rats exhibited a loss of day-night patterns in the brain and the LL rats showed arrhythmicity in general activity and day-night PER1 patterns in corticolimbic structures. During 12 days of exposure to 10 percent alcohol solution, the AR group showed daily increased alcohol intake while LD and LL rats ingested similar amounts. After 72 h of alcohol deprivation, AR and LL rats increased alcohol intake in a binge-like test; this could be due not only to circadian disruption but also to stress and/or anxiety developed from the AR and LL manipulations. Associated to the increased alcohol intake, the AR and LL rats had significant accumulation of ΔFosB in the nucleus accumbens shell and decreased ΔFosB in the infralimbic cortex. Data here reported confirm that the disruption of temporal patterns favors the increased alcohol consumption and that this is associated with a differential accumulation of ΔFosB which may favor the development of addictive behavior.
The molecular mechanisms underlying the transition from recreational drug use to chronic addiction remain poorly understood. One molecule implicated in this process is DeltaFosB, a transcription factor that accumulates in striatum after repeated drug exposure and mediates sensitized behavioral resp
onses to psychostimulants and other drugs of abuse. The downstream transcriptional mechanisms by which DeltaFosB regulates drug-induced behaviors are incompletely understood. We reported previously the chromatin remodeling mechanisms by which DeltaFosB activates the expression of certain genes; however, the mechanisms underlying DeltaFosB-mediated gene repression remain unknown. Here, we identify c-fos, an immediate early gene rapidly induced in striatum after acute psychostimulant exposure, as a novel downstream target that is repressed chronically by DeltaFosB. We show that accumulation of DeltaFosB in striatum after chronic amphetamine treatment desensitizes c-fos mRNA induction to a subsequent drug dose. DeltaFosB desensitizes c-fos expression by recruiting histone deacetylase 1 (HDAC1) to the c-fos gene promoter, which, in turn, deacetylates surrounding histones and attenuates gene activity. Accordingly, local knock-out of HDAC1 in striatum abolishes amphetamine-induced desensitization of the c-fos gene. In concert, chronic amphetamine increases histone H3 methylation on the c-fos promoter, a chromatin modification also known to repress gene activity, as well as expression levels of the H3 histone methyltransferase, KMT1A (lysine methyltransferase 1A, formerly SUV39H1). This study reveals a novel epigenetic pathway through which DeltaFosB mediates distinct transcriptional programs that may ultimately alter behavioral plasticity to chronic amphetamine exposure.
Besides alcohol, alcohol-preferring AA and alcohol-avoiding ANA rats differ also with respect to other abused drugs. To study the molecular basis of these differences, we examined the expression of two transcription factors implicated in addiction, DeltaFosB and pCREB, in brain dopaminergic regions
of AA and ANA rats. The effects of morphine and nicotine were studied to relate the behavioral and molecular changes induced by these drugs. Baseline FosB/DeltaFosB immunoreactivity (IR) in the nucleus accumbens core and pCREB IR in the prefrontal cortex (PFC) were elevated in AA rats. Morphine increased DeltaFosB-like IR more readily in the caudate-putamen of AA rats than in ANA rats. In the PFC morphine decreased pCREB IR in AA rats, but increased it in ANA rats. In addition to enhanced locomotor response, the development of place preference to morphine was enhanced in AA rats. The enhanced nicotine-induced locomotor sensitization found in AA compared with ANA rats seems to depend in addition to dopamine and DeltaFosB on other mechanisms. These findings suggest that enhanced sensitivity of AA rats to morphine is related to augmented morphine-induced expression of FosB/DeltaFosB and morphine-induced reduction of pCREB levels. Moreover, altered innate expression of FosB/DeltaFosB and pCREB in AA rats is likely to affect the sensitivity of these rats to abused drugs.
Chronic exposure to stress or drugs of abuse has been linked to altered gene expression throughout the body, and changes in gene expression in discrete brain regions are thought to underlie many psychiatric diseases, including major depressive disorder and drug addiction. Preclinical models of these
disorders have provided evidence for mechanisms of this altered gene expression, including transcription factors, but evidence supporting a role for these factors in human patients has been slow to emerge. The transcription factor ΔFosB is induced in the prefrontal cortex (PFC) and hippocampus (HPC) of rodents in response to stress or cocaine, and its expression in these regions is thought to regulate their "top down" control of reward circuitry, including the nucleus accumbens (NAc). Here, we use biochemistry to examine the expression of the FosB family of transcription factors and their potential gene targets in PFC and HPC postmortem samples from depressed patients and cocaine addicts. We demonstrate that ΔFosB and other FosB isoforms are downregulated in the HPC but not the PFC in the brains of both depressed and addicted individuals. Further, we show that potential ΔFosB transcriptional targets, including GluA2, are also downregulated in the HPC but not PFC of cocaine addicts. Thus, we provide the first evidence of FosB gene expression in human HPC and PFC in these psychiatric disorders, and in light of recent findings demonstrating the critical role of HPC ΔFosB in rodent models of learning and memory, these data suggest that reduced ΔFosB in HPC could potentially underlie cognitive deficits accompanying chronic cocaine abuse or depression.
New therapies are needed for alcohol abuse, a major public health problem in the U.S. and worldwide. There are only three FDA-approved drugs for treatment of alcohol abuse (naltrexone, acamprosate and disulfuram). On average these drugs yield only moderate success in reducing long-term alcohol consu
mption. Electroacupuncture has been shown to alleviate various drugs of abuse, including alcohol. Although previous studies have shown that electroacupuncture reduced alcohol consumption, the underlying mechanisms have not been fully elucidated. ΔFosB and FosB are members of the Fos family of transcription factors implicated in neural plasticity in drug addiction; a connection between electroacupuncture's treatment of alcohol abuse and the Fos family has not been established. In this study, we trained rats to drink large quantities of ethanol in a modified intermittent access two-bottle choice drinking procedure. When rats achieved a stable baseline of ethanol consumption, electroacupuncture (100 Hz or 2 Hz, 30 min each day) was administered at Zusanli (ST36) for 6 consecutive days. The level of FosB/ΔFosB in reward-related brain regions was assessed by immunohistochemistry. We found that the intake of and preference for ethanol in rats under 100 Hz, but not 2 Hz electroacupuncture regiment were sharply reduced. The reduction was maintained for at least 72 hours after the termination of electroacupuncture treatment. Conversely, 100 Hz electroacupuncture did not alter the intake of and preference for the natural rewarding agent sucrose. Additionally, FosB/ΔFosB levels in the prefrontal cortex, striatal region and the posterior region of ventral tegmental area were increased following excessive ethanol consumption, but were reduced after six-day 100 Hz electroacupuncture. Thus, this study demonstrates that six-day 100 Hz electroacupuncture treatment effectively reduces ethanol consumption and preference in rats that chronically drink excessive amount of ethanol. This effect of electroacupuncture may be mediated by down-regulation of FosB/ΔFosB in reward-related brain regions.
Yazdanfar N, etal., Brain Res Bull. 2021 May;170:98-105. doi: 10.1016/j.brainresbull.2021.02.005. Epub 2021 Feb 13.
Prenatal opioids exposure negatively affects the neurobehavioral abilities of children born from dependence dams. Adolescent housing conditions can buffer the detrimental impacts of early life experiences or contradictory can worsen individual psychosocial functions. The present study investigated t
he effects of maternal morphine dependence and different rearing conditions on behaviors and protein expression in brain reward circuits of male pups. Female Wistar rats a week before conception, during pregnancy and lactation were injected twice daily with escalating doses of morphine or saline. On a postnatal day 21, male pups were weaned and subjected to three different environments for two months: standard (STD), isolated (ISO), or enriched environment (EE). The anxiety and drug-related reward were measured using elevated plus maze, open field test, and conditioned place preference. Western blotting was used to determine the protein level of ΔFosB and μ-opioid receptor proteins in the striatum and the midbrain of male offspring, respectively. Results showed that maternal morphine administration dramatically increased anxiety-like and morphine place preference behaviors in offspring. Also, ISO condition aggravated these behavioral outcomes. While, rearing in EE could attenuate anxiety and morphine conditioning in pups. At molecular levels, maternal morphine exposure and social isolation markedly increased both of ΔFosB and μ-opioid receptor proteins expression. However, rearing in the EE declined ΔFosB protein expression. Together, these findings help to elucidate long lasting impacts of early life morphine exposure and rearing environment on the behavioral and molecular profile of addicted individuals.
Hiroi N, etal., Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10397-402. doi: 10.1073/pnas.94.19.10397.
Chronic exposure to cocaine leads to prominent, long-lasting changes in behavior that characterize a state of addiction. The striatum, including the nucleus accumbens and caudoputamen, is an important substrate for these actions. We previously have shown that long-lasting Fos-related proteins of 35-
37 kDa are induced in the striatum by chronic cocaine administration. In the present study, the identity and functional role of these Fos-related proteins were examined using fosB mutant mice. The striatum of these mice completely lacked basal levels of the 35- to 37-kDa Fos-related proteins as well as their induction by chronic cocaine administration. This deficiency was associated with enhanced behavioral responses to cocaine: fosB mutant mice showed exaggerated locomotor activation in response to initial cocaine exposures as well as robust conditioned place preference to a lower dose of cocaine, compared with wild-type littermates. These results establish the long-lasting Fos-related proteins as products of the fosB gene (specifically DeltaFosB isoforms) and suggest that transcriptional regulation by fosB gene products plays a critical role in cocaine-induced behavioral responses. This finding demonstrates that a Fos family member protein plays a functional role in behavioral responses to drugs of abuse and implicates fosB gene products as important determinants of cocaine abuse.
Chronic use of drugs of abuse profoundly alters stress-responsive system. Repeated exposure to morphine leads to accumulation of the transcription factor ΔFosB, particularly in brain areas associated with reward and stress. The persistent effects of ΔFosB on target genes may play an important role i
n the plasticity induced by drugs of abuse. Recent evidence suggests that stress-related hormones (e.g., glucocorticoids, GC) may induce adaptations in the brain stress system that is likely to involve alteration in gene expression and transcription factors. This study examined the role of GC in regulation of FosB/ΔFosB in both hypothalamic and extrahypothalamic brain stress systems during morphine dependence. For that, expression of FosB/ΔFosB was measured in control (sham-operated) and adrenalectomized (ADX) rats that were made opiate dependent after ten days of morphine treatment. In sham-operated rats, FosB/ΔFosB was induced after chronic morphine administration in all the brain stress areas investigated: nucleus accumbens(shell) (NAc), bed nucleus of the stria terminalis (BNST), central amygdala (CeA), hypothalamic paraventricular nucleus (PVN) and nucleus of the solitary tract noradrenergic cell group (NTS-A(2)). Adrenalectomy attenuated the increased production of FosB/ΔFosB observed after chronic morphine exposure in NAc, CeA, and NTS. Furthermore, ADX decreased expression of FosB/ΔFosB within CRH-positive neurons of the BNST, PVN and CeA. Similar results were obtained in NTS-A(2) TH-positive neurons and NAc pro-dynorphin-positive neurons. These data suggest that neuroadaptation (estimated as accumulation of FosB/ΔFosB) to opiates in brain areas associated with stress is modulated by GC, supporting the evidence of a link between brain stress hormones and addiction.
Chen M, etal., PLoS One. 2019 Aug 23;14(8):e0221506. doi: 10.1371/journal.pone.0221506. eCollection 2019.
Expression of FosB gene in striatum is essential in addiction establishment. Activated glucocorticoid receptors (GRs) induce FosB gene expression in response to stressor. Therefore, elevation of FosB expression in striatum serves as one mechanism by which stress increases risk for addiction. In this
study, adult male Sprague-Dawley rats were used to investigate whether chronic stress result in histone modifications at FosB gene promoter in striatum and how these histone modifications affect FosB expression and the establishment of addiction behavior after administration of drugs of abuse. Animals were randomly assigned to three groups: Electric foot shock (EFS) group received 7-day EFS to induce chronic stress; electric foot shock plus mifepristone (EFS + Mif) group were injected with mifepristone, a nonspecific GRs antagonist, before EFS; control group did not receive any EFS. All groups then received 2-day conditioned place preference (CPP) training with morphine (5 mg/kg body weight) to test vulnerability to drug addiction. Before and after morphine administration, FosB mRNA in striatum was quantified by real-time RT-PCR. Levels of histone H3/H4 acetylation and histone H3K4 dimethylation at FosB promoter in striatum after morphine administration were measured by using chromatin immunoprecipitation (ChIP) plus real-time PCR. EFS group had stronger place preference to morphine and had significantly higher level of FosB mRNA in striatum than the other two groups. H3K4 dimethylation was 2.6-fold higher in EFS group than control group, while no statistical difference in H3/H4 acetylation. Mifepristone administration before EFS decreased histone H3K4 dimethylation and FosB mRNA in striatum, and also diminished morphine-induced conditioned place preference. Altogether, increased level of H3K4 dimethylation at FosB promoter in striatum is partially dependent on the activation of GR and responsible for the elevated level of morphine-induced FosB mRNA in chronic stressed animals.
The transcription factor DeltaFosB is induced in the nucleus accumbens (NAc) by drugs of abuse. This study was designed to evaluate the possible modifications in FosB/DeltaFosB expression in both hypothalamic and extrahypothalamic brain stress system during morphine dependence and withdrawal. Rats w
ere made dependent on morphine and, on day 8, were injected with saline or naloxone. Using immunohistochemistry and western blot, the expression of FosB/DeltaFosB, tyrosine hydroxylase (TH), corticotropin-releasing factor (CRF) and pro-dynorphin (DYN) was measured in different nuclei from the brain stress system in morphine-dependent rats and after morphine withdrawal. Additionally, we studied the expression of FosB/DeltaFosB in CRF-, TH- and DYN-positive neurons. FosB/DeltaFosB was induced after chronic morphine administration in the parvocellular part of the hypothalamic paraventricular nucleus (PVN), NAc-shell, bed nucleus of the stria terminalis, central amygdala and A(2) noradrenergic part of the nucleus tractus solitarius (NTS-A(2)). Morphine dependence and withdrawal evoked an increase in FosB/DeltaFosB-TH and FosB/DeltaFosB-CRF double labelling in NTS-A(2) and PVN, respectively, besides an increase in TH levels in NTS-A(2) and CRF expression in PVN. These data indicate that neuroadaptation to addictive substances, observed as accumulation of FosB/DeltaFosB, is not limited to the reward circuits but may also manifest in other brain regions, such as the brain stress system, which have been proposed to be directly related to addiction.
Wille-Bille A, etal., Prog Neuropsychopharmacol Biol Psychiatry. 2017 Mar 6;74:15-30. doi: 10.1016/j.pnpbp.2016.11.008. Epub 2016 Dec 3.
Early-onset ethanol consumption predicts later development of alcohol use disorders. Age-related differences in reactivity to ethanol's effects may underlie this effect. Adolescent rats are more sensitive and less sensitive than adults to the appetitive and aversive behavioral effects of ethanol, re
spectively, and more sensitive to the neurotoxic effects of experimenter-administered binge doses of ethanol. However, less is known about age-related differences in the neural consequences of self-administered ethanol. ΔFosB is a transcription factor that accumulates after chronic drug exposure and serves as a molecular marker of neural plasticity associated with the transition to addiction. We analyzed the impact of chronic (18 two-bottle choice intake sessions spread across 42days, session length: 18h) ethanol [or only vehicle (control group)] self-administration during adolescence or adulthood on the induction of ΔFosB in several brain areas, anxiety-like behavior, and ethanol-induced locomotor activity and conditioned place preference (CPP) in Wistar rats. Adolescent rats exhibited a progressive escalation of ethanol intake and preference, whereas adult rats exhibited a stable pattern of ingestion. Few behavioral differences in the open field or light-dark test were observed after the intake test. Furthermore, ethanol self-administration did not promote the expression of ethanol-induced CPP. There were, however, large age-related differences in the neural consequences of ethanol drinking: a significantly greater number of ethanol-induced ΔFosB-positive cells was found in adolescents vs. adults in the prelimbic cortex, dorsolateral striatum, nucleus accumbens core and shell, and central amygdala nucleus capsular and basolateral amygdala, with sex-related differences found at central amygdala. This greater ethanol-induced ΔFosB induction may represent yet another age-related difference in the sensitivity to ethanol that may put adolescents at higher risk for problematic ethanol use.
Liu HF, etal., Neurosci Bull. 2007 Jan;23(1):1-8. doi: 10.1007/s12264-007-0001-6.
OBJECTIVE: To investigate the effect of M(5) muscarinic receptor subtype on the locomotor sensitization induced by heroin priming, and it's effect on the FosB expression in the nucleus accumbens (NAc) and the hippocampus in the heroin sensitized rats. METHODS: Locomotor activity
was measured every 10 min for 1 h after subcutaneous injection of heroin. FosB expression was assayed by immunohistochemistry, and the antisense oligonucleotides (AS-ONs) targeting M(5) muscarinic receptor was transferred with the lipofectin. RESULTS: Microinjection of AS-ONs targeting M(5) muscarinic receptor in the ventral tegmental area (VTA) blocked the expression of behavioral sensitization induced by heroin priming in rats. Meanwhile, the expression of FosB-positive neurons in either the NAc or the dentate gyrus (DG) of the hippocampus increased in heroin-induced locomotor sensitized rats. The enhancement of FosB-positive neurons in the NAc or DG could be inhibited by microinjection of M(5) muscarinic receptor AS-ONs into the VTA before the heroin-induced locomotor sensitization was performed. In contrast, microinjection of M(5) muscarinic receptor sense oligonucleotide (S-ONs) into the VTA did not block the expression of behavioral sensitization or the expression of FosB in the NAc or DG in the heroin sensitized rats. CONCLUSION: Blocking M(5) muscarinic receptor in the VTA inhibits the expression of heroin-induced locomotor sensitization, which is associated with the regulation of FosB expression in the NAc and hippocampus neurons. M(5) muscarinic receptor may be a useful pharmacological target for the treatment of heroin addiction.
INTRODUCTION: Periadolescent nicotine exposure is associated with increased consumption and rewarding properties of abused drugs. In the case of peri- but not post-adolescent animals, these effects are persistent and last to adulthood, suggesting that early nicotine treatment may alter po
stnatal CNS development in ways that contribute to long-term problems with drug abuse. MATERIALS AND METHODS: To begin to identify brain regions that may be altered by developmental nicotine exposure, we have measured expression of a transcription factor, FosB, within a series of reward- and memory-related brain regions of Sprague-Dawley rats. RESULTS: FosB expression is known to acutely and cumulatively increase within a subset of brain regions, particularly nucleus accumbens, after exposure to many classes of abused drugs. Our results demonstrate that FosB is increased within nucleus accumbens and also the granule cell layer of hippocampal dentate gyrus after both peri- and post-adolescent nicotine exposure (0.4 mg kg(-1) day(-1) from days 34 to 43 and 60 to 69, respectively). In periadolescents, expression increases were detected 2 days after nicotine exposure, and persisted for weeks, through at least early adulthood at 80 days of age. In post-adolescents, expression increases persisted for at least 11 days to postnatal day 80. DISCUSSION: These findings demonstrate that nicotine treatment during both peri- and post-adolescence persistently alters activity of brain regions involved in reward and memory. CONCLUSION: Because this altered gene expression occurs after both peri- and post-adolescent treatment, it cannot be directly responsible for increased consumption and rewarding properties of abused drugs previously established to be distinctly associated with periadolescent nicotine exposure.
Multiple genes are thought to influence both susceptibility to nicotine dependence and its comorbid behavioral traits in humans. However, which specific genes contribute to this pleiotropic effect is poorly understood. Previous rodent studies have shown that many addictive substances and stressful s
timuli increase the expression of the transcription factor FosB in limbic and associated regions and that the protein products of fosB contribute to certain behavioral effects of cocaine and morphine. However, the role of this gene in nicotine-regulated behaviors and dependence-related behavioral traits is unknown. We tested the hypothesis that a constitutive level of FosB affects nicotine-regulated behaviors and comorbid behavioral traits using constitutive fosB knockout (KO) mice. Following repeated or prolonged nicotine administration, but not a single acute administration, KO mice were impaired in conditioned place preference, oral nicotine intake and motor suppression. In wild-type mice, repeated nicotine injections, but not a single acute injection, increased the expression of FosB and its truncated variant DeltaFosB in the targets but not at the origins of the mesolimbic and nigrostriatal dopamine pathways; no detectable level of FosB/DeltaFosB was found in KO mice. In tasks designed to assess behavioral traits, KO mice exhibited more pronounced behavioral abnormalities when stress levels were high than when they were minimized. Our results suggest that the constitutive absence of fosB has a pleiotropic influence on the behavioral effects of repeated or prolonged nicotine administration and on stress-related behavioral traits in mice.
El Rawas R, etal., Front Behav Neurosci. 2012 Mar 2;6:8. doi: 10.3389/fnbeh.2012.00008. eCollection 2012.
The worsening of drug abuse by drug-associated social interaction is a well-studied phenomenon. In contrast, the molecular mechanisms of the beneficial effect of social interaction, if offered as a mutually exclusive choice to drugs of abuse, are under-investigated. In a rat place preference conditi
oning (CPP) paradigm, four 15 min episodes of social interaction with a gender- and weight-matched male early-adult conspecific inhibited cocaine-induced reinstatement of cocaine CPP, a model of relapse. These protective effects of social interaction were paralleled by a reduced activation, as assessed by Zif268 expression, in brain areas known to play pivotal roles in drug-seeking behavior. Here we show that social interaction during extinction of cocaine CPP also reduced cocaine-CPP-stimulated FosB expression in the nucleus accumbens shell and core. In addition, social interaction during cocaine CPP extinction increased pCREB (cAMP response element binding protein) expression in the nucleus accumbens shell and the cingulate cortex area 1 (Cg1). Our results show that FosB and pCREB may be implicated in the protective effect of social interaction against cocaine-induced reinstatement of CPP. Thus, social interaction, if offered in a context that is clearly distinct from the previously drug-associated one, may profoundly inhibit relapse to cocaine addiction.
Kormos V, etal., Neuroscience. 2016 Aug 25;330:335-58. doi: 10.1016/j.neuroscience.2016.06.004. Epub 2016 Jun 6.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in stress adaptation with potential relevance in mood disorder management. PACAP deficient (KO) mice on CD1 background were shown to have depression-like phenotype. Here we aimed at investigating effects of chronic variab
le mild stress (CVMS) in non-injected, vehicle and imipramine-treated KO mice vs. wildtype (WT) counterparts. We hypothesized reduced FosB neuronal activity in stress-related centers, altered activity and peptide/neurotransmitter content of corticotropin-releasing factor (CRF) cells of the oval (ovBST) bed nucleus of stria terminalis (BST), urocortin 1 (Ucn1) neurons of centrally projecting Edinger-Westphal nucleus (cpEW) and serotonin (5HT) cells of dorsal raphe (DR) in PACAP deficiency. CVMS caused decreased body weight and increased adrenal size, corticosterone (CORT) titers and depression-like behavior in WT mice, in contrast to KO animals. CVMS increased FosB in the central (CeA) and medial amygdala, dorsomedial (dmBST), ventral (vBST), ovBST, CA1 area, dentate gyrus (DG), ventral lateral septum, parvo- (pPVN) and magnocellular paraventricular nucleus, lateral periaqueductal gray, cpEW and DR. Lack of PACAP blunted the CVMS-induced FosB rise in the CeA, ovBST, dmBST, vBST, CA1 area, pPVN and DR. The CVMS-induced FosB expression in ovBST-CRF and cpEW-Ucn1 neurons was abolished in KO mice. Although CVMS did not induce FosB in 5HT-DR neurons, PACAP KO mice had increased 5HT cell counts and 5HT content. We conclude that PACAP deficiency affects neuronal reactivity in a brain area-specific manner in stress centers, as well as in ovBST-CRF, cpEW-Ucn1 and 5HT-DR neurons leading to reduced CVMS response and altered depression level.
van de Wetering R and Schenk S, Addict Biol. 2020 Sep;25(5):e12814. doi: 10.1111/adb.12814. Epub 2019 Aug 1.
Repeated exposure to drugs produces a plethora of persistent brain changes, some of which underlie the development of drug addiction. An important objective of addiction research is to identify the brain changes that might mediate the transition from drug use to drug misuse. The persistent accumulat
ion of the transcription factor, ∆FosB, following repeated drug exposure provides a means of achieving this objective. Experiments were conducted on sexually mature male Sprague-Dawley rats. The effects of extensive 3,4-methylenedioxymethamphetamine (MDMA) self-administration on immunohistochemical measurements of ∆FosB accumulation in 12 brain regions was compared with a matched, drug-naive, control group. Other groups were pretreated with MDMA (0.0 or 10.0 mg/kg, ip, once daily for 5 days), and the locomotor-activating effect of MDMA (200 μg/side) microinjected bilaterally into brain regions selected on the basis of the ∆FosB results was subsequently determined. MDMA self-administration significantly increased ∆FosB expression in the nucleus accumbens core, ventromedial and dorsomedial caudate-putamen, anterior cingulate, prelimbic, infralimbic, and orbitofrontal cortex, and both the central and basolateral amygdala, but not in the ventrolateral or dorsolateral caudate-putamen. Increases in the nucleus accumbens shell were substantial but were not significant following statistical correction for multiple comparisons. MDMA pretreatment enhanced MDMA-produced hyperactivity only when administered into the nucleus accumbens or the medial, but not the lateral, caudate-putamen, mirroring the ∆FosB results. These data compare favorably to results following repeated exposure to other drugs of abuse and support the idea of common neuroplastic changes following repeated drug exposure.
Exposure to repetitive seizures is known to promote convulsions which depend on specific patterns of network activity. We aimed at evaluating the changes in seizure phenotype and neuronal network activation caused by a modified 6-Hz corneal stimulation model of psychomotor seizures. Mice received up
to 4 sessions of 6-Hz corneal stimulation with fixed current amplitude of 32 mA and inter-stimulation interval of 72 h. Video-electroencephalography showed that evoked seizures were characterized by a motor component and a non-motor component. Seizures always appeared in frontal cortex, but only at the fourth stimulation they involved the hippocampus, suggesting the establishment of an epileptogenic process. Duration of seizure non-motor component progressively decreased after the second session, whereas convulsive seizures remained unchanged. In addition, a more severe seizure phenotype, consisting of tonic-clonic generalized convulsions, was predominant after the second session. Immunohistochemistry and double immunofluorescence experiments revealed a significant increase in neuronal activity occurring in the lateral amygdala after the fourth session, most likely due to activity of principal cells. These findings indicate a predominant role of amygdala in promoting progressively more severe convulsions as well as the late recruitment of the hippocampus in the seizure spread. We propose that the repeated 6-Hz corneal stimulation model may be used to investigate some mechanisms of epileptogenesis and to test putative antiepileptogenic drugs.
Ryabinin AE and Wang YM, Alcohol Clin Exp Res. 1998 Nov;22(8):1646-54.
To identify alcohol-responsive brain areas, we have immunohistochemically analyzed expression of c-Fos, FosB, and other Fos-related antigens in the brain of inbred DBA/2J mice after a single or repeated injection of alcohol (4 g/kg). We observed increased expression of c-Fos after alcohol administra
tion in the central nucleus of amygdala, paraventricular nuclei of hypothalamus and thalamus, and several other brain areas. Although increased expression of c-Fos in the nucleus accumbens was also observed, this increase was not statistically significant. Repeated administration of alcohol had the tendency to reduce alcohol-induced c-Fos expression in these areas. Immunohistochemical analysis using an antibody recognizing most Fos-related antigens revealed increases of expression of these proteins in a partially overlapping set of brain regions. In contrast to c-Fos, FosB expression was found to be elevated significantly higher after repeated than after acute treatment with alcohol in several brain areas, including the shell of nucleus accumbens. In contrast to previous c-Fos studies, our studies confirm that alcohol administration indeed activates the reward circuits, including the basal ganglia, and suggest that FosB could serve as a more sensitive marker for this activation.
Carneiro de Oliveira PE, etal., Front Behav Neurosci. 2016 Sep 12;10:173. doi: 10.3389/fnbeh.2016.00173. eCollection 2016.
While clinical and pre-clinical evidence suggests that adolescence is a risk period for the development of addiction, the underlying neural mechanisms are largely unknown. Stress during adolescence has a huge influence on drug addiction. However, little is known about the mechanisms related to the i
nteraction among stress, adolescence and addiction. Studies point to ΔFosB as a possible target for this phenomenon. In the present study, adolescent and adult rats (postnatal day 28 and 60, respectively) were restrained for 2 h once a day for 7 days. Three days after their last exposure to stress, the animals were challenged with saline or amphetamine (1.0 mg/kg i.p.) and amphetamine-induced locomotion was recorded. Immediately after the behavioral tests, rats were decapitated and the nucleus accumbens was dissected to measure ΔFosB protein levels. We found that repeated restraint stress increased amphetamine-induced locomotion in both the adult and adolescent rats. Furthermore, in adult rats, stress-induced locomotor sensitization was associated with increased expression of ΔFosB in the nucleus accumbens. Our data suggest that ΔFosB may be involved in some of the neuronal plasticity changes associated with stress induced-cross sensitization with amphetamine in adult rats.
Malboosi N, etal., Gene. 2020 Jun 5;742:144601. doi: 10.1016/j.gene.2020.144601. Epub 2020 Mar 19.
Morphine is a natural alkaloid which derived from the opium poppy Papaver somniferum. Many studies have reported the effect of morphine on learning, memory and gene expression. CART (cocaine-amphetamine regulated transcript)is an important neuropeptide which has a critical role in physiological proc
esses including drug dependence and antioxidant activity. ΔfosB is a transcription factor which modulates synaptic plasticity and affects learning and memory. TFAM (the mitochondrial transcription factor A) and PGC-1α (Peroxisome proliferator-activated receptor γ coactivator-1α) are critically involved in mitochondrial biogenesis and antioxidant pathways. NeuroAid is a Chinese medicine that induces neuroprotective and anti-apoptotic effects. In this research, we aimed to investigate the effect of NeuroAid on morphine-induced amnesia with respect to the expression of TFAM, PGC-1α, ΔfosB and CART in the rat's hippocampus. In this study, Morphine sulfate (at increasing doses), Naloxone hydrochloride (2.5 mg/kg) and NeuroAid (2.5 mg/kg) were administered intraperitoneal and real-time PCR reactions were done to assess gene expression. The results showed, morphine impaired memory of step-through passive avoidance, while NeuroAid had no effect. NeuroAid attenuated (but not reversed) morphine-induced memory impairment in morphine-addicted rats. Morphine increased the expression of PGC-1α and decreased the expression of CART. However, NeuroAid increased the expression of TFAM, PGC-1α, ΔfosB and CART. NeuroAid restored the effect of morphine on the expression of CART and PGC-1α. In conclusion, morphine impaired memory of step-through passive avoidance and NeuroAid attenuated this effect. The effect of NeuroAid on morphine-induced memory impairment/gene expression may be related to its anti-apoptotic and neuroprotective effects.
Sadat-Shirazi MS, etal., Am J Drug Alcohol Abuse. 2019;45(1):84-89. doi: 10.1080/00952990.2018.1529182. Epub 2019 Jan 11.
BACKGROUND: Besides the analgesic effect of tramadol, prolonged exposure to tramadol can induce adaptive changes thereby leading to dependence and tolerance. Tramadol induces its effect via µ-opioid receptor (MOR). However, tramadol has other targets such as serotonin and epinephrine tran
sporters. OBJECTIVE: CREB and ΔFosB are transcriptional factors, which are involved in the behavioral abnormalities underlying drug abuse. In this study, the effects of acute and chronic tramadol treatments on MOR, ΔFosB, and CREB levels were studied. METHODS: For this purpose, 36 male Wistar rats were used. The animals were divided into two main groups. A total of 18 animals received tramadol (0, 5, and 10 mg/kg) acutely and 18 animals received the same doses for the following 14 days. One hour after the last injection, the NAC and PFC were dissected and kept at -80°C in liquid nitrogen. Using western blotting technique, the levels of MOR, ΔFosB, and p-CREB were evaluated. RESULTS: In the NAC, acute tramadol exposure increases the levels of MOR and p-CREB. Moreover, chronic tramadol administration in this region results in elevated levels of MOR, ΔFosB and p-CREB compared with saline-treated rats. The levels of MOR and p-CREB in the PFC increased in both acute and chronic tramadol exposure. Also, ΔFosB levels increased only following chronic tramadol administration. The results revealed that adaptive changes occurred during drug exposure. CONCLUSION: We concluded that both CREB and ΔFosB played a role in tramadol dependence. Additionally, increased MOR levels during tramadol treatments might be due to receptor desensitization.
De Pauli RF, etal., Pharmacol Biochem Behav. 2014 Feb;117:70-8. doi: 10.1016/j.pbb.2013.12.007. Epub 2013 Dec 16.
Chronic drug exposure and drug withdrawal induce expressive neuronal plasticity which could be considered as both functional and pathological responses. It is well established that neuronal plasticity in the limbic system plays a pivotal role in relapse as well as in compulsive characteristics of dr
ug addiction. Although increases in FosB/DeltaFosB expression constitute one of the most important forms of neuronal plasticity in drug addiction, it is unclear whether they represent functional or pathological plasticity. It is of noteworthy importance the individual differences in the transition from recreational use to drug addiction. These differences have been reported in studies involving the ethanol-induced locomotor sensitization paradigm. In the present study we investigated whether sensitized and non-sensitized mice differ in terms of FosB/DeltaFosB expression. Adult male outbred Swiss mice were daily treated with ethanol or saline for 21 days. According to the locomotor activity in the acquisition phase, they were classified as sensitized (EtOH_High) or non-sensitized (EtOH_Low). After 18 h or 5 days, their brains were processed for FosB/DeltaFosB immunohistochemistry. On the 5th day of withdrawal, we could observe increased FosB/DeltaFosB expression in the EtOH_High group (in the motor cortex), in the EtOH_Low group (in the ventral tegmental area), and in both groups (in the striatum). Differences were more consistent in the EtOH_Low group. Therefore, behavioral variability observed in the acquisition phase of ethanol-induced locomotor sensitization was accompanied by differential neuronal plasticity during withdrawal period. Furthermore, distinct patterns of FosB/DeltaFosB expression detected in sensitized and non-sensitized mice seem to be more related to withdrawal period rather than to chronic drug exposure. Finally, increases in FosB/DeltaFosB expression during withdrawal period could be considered as being due to both functional and pathological plasticity.