Al-Yacoub N, etal., Genome Biol. 2016 Jan 11;17:2. doi: 10.1186/s13059-015-0861-4.
BACKGROUND: Dilated cardiomyopathy (DCM) is a common form of cardiomyopathy causing systolic dysfunction and heart failure. Rare variants in more than 30 genes, mostly encoding sarcomeric proteins and proteins of the cytoskeleton, have been implicated in familial DCM to date. Yet, the majority of va
riants causing DCM remain to be identified. The goal of the study is to identify novel mutations causing familial dilated cardiomyopathy. RESULTS: We identify FBXO32 (ATROGIN 1), a member of the F-Box protein family, as a novel DCM-causing locus. The missense mutation affects a highly conserved amino acid and is predicted to severely impair binding to SCF proteins. This is validated by co-immunoprecipitation experiments from cells expressing the mutant protein and from human heart tissue from two of the affected patients. We also demonstrate that the hearts of the patients with the FBXO32 mutation show accumulation of selected proteins regulating autophagy. CONCLUSION: Our results indicate that abnormal SCF activity with subsequent impairment of the autophagic flux due to a novel FBXO32 mutation is implicated in the pathogenesis of DCM.
Pathological cardiac hypertrophy is regarded as a critical intermediate step toward the development of heart failure. Many signal transduction cascades are demonstrated to dictate the induction and progression of pathological hypertrophy; however, our understanding in regulatory mechanisms responsib
le for the suppression of hypertrophy remains limited. In this study, we showed that exacerbated hypertrophy induced by pressure overload in cardiac-deleted Pak1 mice was attributable to a failure to upregulate the antihypertrophic E3 ligase, Fbxo32, responsible for targeting proteins for the ubiquitin-degradation pathway. Under pressure overload, cardiac overexpression of constitutively active Pak1 mice manifested strong resilience against pathological hypertrophic remodeling. Mechanistic studies demonstrated that subsequent to Pak1 activation, the binding of Smad3 on a critical singular AGAC(-286)-binding site on the FBXO32 promoter was crucial for its transcriptional regulation. Pharmacological upregulation of Fbxo32 by Berberine ameliorated hypertrophic remodeling and improved cardiac performance in cardiac-deficient Pak1 mice under pressure overload. Our findings discover Smad3 and Fbxo32 as novel downstream components of the Pak1-dependent signaling pathway for the suppression of hypertrophy. This discovery opens a new venue for opportunities to identify novel targets for the management of cardiac hypertrophy.
Al-Hassnan ZN, etal., BMC Med Genet. 2016 Jan 14;17:3. doi: 10.1186/s12881-016-0267-5.
BACKGROUND: Familial dilated cardiomyopathy (DCM) is genetically heterogeneous. Mutations in more than 40 genes have been identified in familial cases, mostly inherited in an autosomal dominant pattern. DCM due to recessive mutations is rarely observed. In consanguineous families, homozygosity mappi
ng and whole exome sequencing (WES) can be utilized to identify the genetic defects in recessively inherited DCM. METHODS: In a consanguineous family with four affected siblings with severe DCM, we combined homozygosity mapping, linkage analysis and WES, to uncover the genetic defect. RESULTS: A region of homozygosity (ROH) on chromosome 8q24.13-24.23 was found to be shared by all of the four affected siblings. WES detected ~47,000 variants that were filtered to a homozygous mutation (p.Gly243Arg) in the FBXO32 gene, located within the identified ROH. The mutation segregated with the phenotype, replaced a highly-conserved amino acid, and was not detected in 1986 ethnically-matched chromosomes. FBXO32, which encodes a muscle-specific ubiquitin ligase, has been implicated in the pathogenesis of cardiomyopathy through the ubiquitin proteasome system (UPS). In addition, FBXO32-knockout mice manifest with cardiomyopathy. Screening the index patient for all of the WES variants in 48 genes known to be implicated in hypertrophic and dilated cardiomyopathy was negative. CONCLUSIONS: Our data suggest that FBXO32 is a candidate gene for recessive DCM. Acting as a cardiac ubiquitin ligase, mutated FBXO32 could perturb the degradation of target proteins in the UPS, the impairment of which has been observed in cardiomyopathy. Our work proposes that genes encoding other ubiquitin ligases could also be implicated in familial cardiomyopathy.