Endothelial PAS domain protein 1 (EPAS1) has been identified as a member of the basic helix-loop-helix (bHLH)-PAS protein family, and plays a critical role in the regulation of hypoxia inducible genes. It remains unknown whether physiological stimuli other than
hypoxia modulate EPAS1 expression. This study examined the inducible expression of EPAS1 by various cytokines and growth factors, and determined the target gene for EPAS1 in cardiac myocytes. In cultured cardiac myocytes, interleukin-1beta (IL-1beta) but not tumor necrosis factor alpha markedly increased the EPAS1 mRNA and protein levels in a time- and dose-dependent manner, whereas hypoxia increases the expression of EPAS1 protein but not its mRNA. Such an induction of EPAS1 by IL-1beta was efficiently inhibited by the pretreatment of the cells with Src kinase inhibitors, such as herbimycin A and PP1. The expression of adrenomedullin (AM) mRNA, which is also upregulated by IL-1beta, was dramatically increased in cardiac myocytes transduced with adenovirus expressing EPAS1. Transient transfection assays using the site-specific mutation of the AM promoter showed that EPAS1 overexpression increases the transcriptional activity through a sequence similar to the consensus HRE (hypoxia responsive element). These results suggest that IL-1beta induces the EPAS1 at the transcriptional level, which in turn activates the AM gene. Since IL-1beta has been implicated in the pathogenesis of heart failure and AM can ameliorate the cardiac function, our results suggest that EPAS1 plays a role in the adaptation of the cardiac myocytes during heart failure as well as in the regulation of gene expression by hypoxia.
Scortegagna M, etal., Blood. 2003 Sep 1;102(5):1634-40. Epub 2003 May 15.
Hypoxic stress plays a role in pathophysiologic states such as myocardial infarction and cerebral vascular events as well as in normal physiologic conditions including development and hematopoiesis. Members of the hypoxia inducible factor (HIF) family function as transcriptional regulators of genes
involved in the hypoxic response. After generating adult mice that globally lack endothelial PAS domain protein 1 (EPAS1, also known as HIF-2alpha/HRF/HLF/MOP3), the second member of the HIF family, characterization of the hematopoietic cell population indicated that the loss of EPAS1/HIF-2alpha resulted in pancytopenia. Using bone marrow reconstitution experiments of lethally irradiated hosts, we have defined the extent and site of hematopoietic impairment in the EPAS1/HIF-2alpha null mice. These data suggest a critical role for EPAS1/HIF-2alpha in maintaining a functional microenvironment in the bone marrow for effective hematopoiesis.
Here we describe the cloning and characterization of a PAS domain transcription factor termed endothelial PAS-1 (EPAS1). This protein shares 48% sequence identity with hypoxia inducible factor (HIF-1alpha) and lesser similarity with other members of the basic he
lix-loop-helix/PAS domain family of transcription factors. Like HIF-1alpha, EPAS1 binds to and activates transcription from a DNA element originally isolated from the erythropoietin gene and containing the sequence 5'-GCCCTACGTGCTGTCTCA-3'. Activation by both HIF-1alpha and EPAS1 is stimulated by hypoxic conditions. EPAS1 forms a heterodimeric complex with the aryl hydrocarbon nuclear transporter prior to transcriptional activation of target genes. EPAS1 expression is limited to the endothelium of mouse embryos and, in agreement with its cell type-specific expression pattern, is capable of specifically activating the transcription of the endothelial tyrosine kinase gene Tie-2. These observations raise the possibility that EPAS1 may represent an important regulator of vascularization, perhaps involving the regulation of endothelial cell gene expression in response to hypoxia.
Xu J, etal., Wilderness Environ Med. 2015 Sep;26(3):288-94. doi: 10.1016/j.wem.2015.01.002. Epub 2015 Mar 16.
OBJECTIVE: To test the hypothesis that the polymorphisms in the EPAS1 gene are associated with the susceptibility to high altitude polycythemia (HAPC) in Tibetans at the Qinghai-Tibetan Plateau. METHODS: We enrolled 63 Tibetan HAPC patients and 131 matched healt
hy Tibetans as a control group, from the Yushu area in Qinghai where the altitude is greater than 3500 m. Eight single-nucleotide polymorphisms (SNPs) of the EPAS1 gene, including rs12619696, rs13420857, rs2881504, rs4953388, rs13419896, rs4953354, rs10187368, and rs7587138, were genotyped by the Sequenom MassARRAY SNP assay. RESULTS: The frequencies of the G allele of EPAS1 SNP rs13419896 were significantly higher in the HAPC group than in the control group (P < .05). Moreover, the A alleles of rs12619696 and rs4953354 were prevalent in the HAPC group, and their counterpart homozygotes were prevalent in the normal Tibetan group (P < .05). CONCLUSIONS: Compared with normal Tibetans, Tibetans with HAPC are maladapted and have a different haplotype in EPAS1 SNPs rs12619696, rs13419896, and rs4953354.
Scortegagna M, etal., Nat Genet 2003 Dec;35(4):331-40. Epub 2003 Nov 9.
Hypoxia-inducible factor (HIF) transcription factors respond to multiple environmental stressors, including hypoxia and hypoglycemia. We report that mice lacking the HIF family member HIF-2alpha (encoded by Epas1) have a syndrome of multiple-organ pathology, bio
chemical abnormalities and altered gene expression patterns. Histological and ultrastructural analyses showed retinopathy, hepatic steatosis, cardiac hypertrophy, skeletal myopathy, hypocellular bone marrow, azoospermia and mitochondrial abnormalities in these mice. Serum and urine metabolite studies showed hypoglycemia, lactic acidosis, altered Krebs cycle function and dysregulated fatty acid oxidation. Biochemical assays showed enhanced generation of reactive oxygen species (ROS), whereas molecular analyses indicated reduced expression of genes encoding the primary antioxidant enzymes (AOEs). Transfection analyses showed that HIF-2alpha could efficiently transactivate the promoters of the primary AOEs. Prenatal or postnatal treatment of Epas1-/- mice with a superoxide dismutase (SOD) mimetic reversed several aspects of the null phenotype. We propose a rheostat role for HIF-2alpha that allows for the maintenance of ROS as well as mitochondrial homeostasis.
Putra AC, etal., PLoS One. 2015 Aug 11;10(8):e0134496. doi: 10.1371/journal.pone.0134496. eCollection 2015.
Hypoxia-inducible factor-2alpha (HIF-2alpha, or EPAS1) is important for cancer progression, and is a putative biomarker for poor prognosis for non-small cell lung cancer (NSCLC). However, molecular mechanisms underlying the EPAS1
span> overexpression are not still fully understood. We explored a role of a single nucleotide polymorphism (SNP), rs13419896 located within intron 1 of the EPAS1 gene in regulation of its expression. Bioinformatic analyses suggested that a region including the rs13419896 SNP plays a role in regulation of the EPAS1 gene expression and the SNP alters the binding activity of transcription factors. In vitro analyses demonstrated that a fragment containing the SNP locus function as a regulatory region and that a fragment with A allele showed higher transactivation activity than one with G, especially in the presence of overexpressed c-Fos or c-Jun. Moreover, NSCLC patients with the A allele showed poorer prognosis than those with G at the SNP even after adjustment with various variables. In conclusion, the genetic polymorphism of the EPAS1 gene may lead to variation of its gene expression levels to drive progression of the cancer and serve as a prognostic marker for NSCLC.
High-altitude adaptation in Tibetans is influenced by introgression of a 32.7-kb haplotype from the Denisovans, an extinct branch of archaic humans, lying within the endothelial PAS domain protein 1 (EPAS1), and has also been reported in Sherpa. We genotyped 1
9 variants in this genomic region in 1507 Eurasian individuals, including 1188 from Bhutan and Nepal residing at altitudes between 86 and 4550 m above sea level. Derived alleles for five SNPs characterizing the core Denisovan haplotype (AGGAA) were present at high frequency not only in Tibetans and Sherpa, but also among many populations from the Himalayas, showing a significant correlation with altitude (Spearman's correlation coefficient = 0.75, p value 3.9 x 10(-11)). Seven East- and South-Asian 1000 Genomes Project individuals shared the Denisovan haplotype extending beyond the 32-kb region, enabling us to refine the haplotype structure and identify a candidate regulatory variant (rs370299814) that might be interacting in an additive manner with the derived G allele of rs150877473, the variant previously associated with high-altitude adaptation in Tibetans. Denisovan-derived alleles were also observed at frequencies of 3-14% in the 1000 Genomes Project African samples. The closest African haplotype is, however, separated from the Asian high-altitude haplotype by 22 mutations whereas only three mutations, including rs150877473, separate the Asians from the Denisovan, consistent with distant shared ancestry for African and Asian haplotypes and Denisovan adaptive introgression.