Dumont M, etal., Biochim Biophys Acta 2004 Sep 17;1679(3):230-47.
The human ELAC2 gene was the first candidate prostate cancer susceptibility gene identified by linkage analysis and positional cloning. DNA sequence indicates a protein of 826 amino acids encoded by 24 exons. In the present study, we characterized the coding seq
uence of chimpanzee and gorilla ELAC2 orthologs by direct sequencing of genomic fragments, and of cynomolgus monkey and rat orthologs by screening cDNA libraries. The orthologs characterized in the chimpanzee, gorilla and cynomolgus monkey also encode proteins of 826 amino acids, sharing 98.9%, 98.5% and 93.7% sequence identity with the human protein. Our analyses of the mouse ELAC2 gene identified two alternative mRNA transcripts. One is translated into a protein of 824 a.a. (mouse ELAC2), whereas the other one encodes a protein of 831 amino acids (mouse ELAC2A) resulting from an alternatively spliced form of 25 exons. The rat ELAC2 gene ortholog also expressed two similar alternatively spliced transcripts. These two forms are ubiquitously expressed in mouse and rat tissues. The highest levels of expression of the ELAC2 form are observed in the testis while the lowest levels are seen in the prostate and in the muscle. However, it is of interest to note that the relative abundance of the rat and mouse ELAC2 transcripts, measured by real-time quantitative PCR, is higher than the respective ELAC2A forms in all surveyed tissues except for the prostate and the muscle. The ELAC2A transcript levels are 4.1 to 5.0-fold higher than the ELAC2 levels in the prostate of rat and mouse, respectively. A fine analysis of the conserved domains on the primary structure of ELAC2 orthologs revealed the presence of a putative beta-CASP domain shared by the PSO2 (SNM1) DNA interstrand cross-link repair proteins, and the 73-kDa subunit of mRNA 3' end cleavage and polyadenylation specificity factor (CPSF73) as well as Artemis proteins, thus suggesting a potential interaction of ELAC2 gene product with nucleic acids and more specifically with RNA targets. Taken together, these data offer useful tools to further study the regulation and cellular function of ELAC2 gene in experimental models and provide further insight concerning conserved amino acid motifs that could have biological significance.
The recently identified prostate cancer susceptibility gene ELAC2 ( HPC2) harbors two common missense variants, a serine to leucine substitution at residue 217 (Leu217) and an alanine to threonine substitution at residue 541 (Thr541). We genotyped the two varian
ts in a Japanese cohort consisting of 350 prostate cancer patients 242 male population controls, and 114 male low-risk controls. Both missense alleles, Leu217 and Thr541, were carried at higher frequency in Japanese patients than in the controls (Leu217, P= 0.0012; Thr541, P = 0.0145), and the odds ratios associated with carrying these sequence variants were higher in Japanese than in Caucasians. Although the Leu217 and Thr541 variants of ELAC2 are less common in Japanese than in Caucasians, both variants confer significantly increased risk of prostate cancer in Japanese. Carriage of these variants was not associated with age at diagnosis, tumor stage, or tumor grade in these Japanese prostate cancer patients. The allele-specific pattern of risk observed in Japanese and familial Caucasian patients was qualitatively similar; however, the magnitude of that risk was considerably greater in Japanese than in Caucasians.
Haack TB, etal., Am J Hum Genet. 2013 Aug 8;93(2):211-23. doi: 10.1016/j.ajhg.2013.06.006. Epub 2013 Jul 11.
The human mitochondrial genome encodes RNA components of its own translational machinery to produce the 13 mitochondrial-encoded subunits of the respiratory chain. Nuclear-encoded gene products are essential for all processes within the organelle, including RNA processing. Transcription of the mitoc
hondrial genome generates large polycistronic transcripts punctuated by the 22 mitochondrial (mt) tRNAs that are conventionally cleaved by the RNase P-complex and the RNase Z activity of ELAC2 at 5' and 3' ends, respectively. We report the identification of mutations in ELAC2 in five individuals with infantile hypertrophic cardiomyopathy and complex I deficiency. We observed accumulated mtRNA precursors in affected individuals muscle and fibroblasts. Although mature mt-tRNA, mt-mRNA, and mt-rRNA levels were not decreased in fibroblasts, the processing defect was associated with impaired mitochondrial translation. Complementation experiments in mutant cell lines restored RNA processing and a yeast model provided additional evidence for the disease-causal role of defective ELAC2, thereby linking mtRNA processing to human disease.
Xu J, etal., Am J Hum Genet. 2001 Apr;68(4):901-11. Epub 2001 Mar 14.
To investigate the relationship between HPC2/ELAC2 and prostate cancer risk, we performed the following analyses: (1) a linkage study of six markers in and around the HPC2/ELAC2 gene at 17p11 in 159 pedigrees with hereditary
prostate cancer (HPC); (2) a mutation-screening analysis of all coding exons of the gene in 93 probands with HPC; (3) family-based and population-based association study of common HPC2/ELAC2 missense variants in 159 probands with HPC, 249 patients with sporadic prostate cancer, and 222 unaffected male control subjects. No evidence for linkage was found in the total sample, nor in any subset of pedigrees based on characteristics that included age at onset, number of affected members, male-to-male disease transmission, or race. Furthermore, only the two previously reported missense changes (Ser217Leu and Ala541Thr) were identified by mutational analysis of all HPC2/ELAC exons in 93 probands with HPC. In association analyses, family-based tests did not reveal excess transmission of the Leu217 and/or Thr541 alleles to affected offspring, and population-based tests failed to reveal any statistically significant difference in the allele frequencies of the two polymorphisms between patients with prostate cancer and control subjects. The results of this study lead us to reject the three alternative hypotheses of (1) a highly penetrant, major prostate cancer-susceptibility gene at 17p11, (2) the allelic variants Leu217 or Thr541 of HPC2/ELAC2 as high-penetrance mutations, and (3) the variants Leu217 or Thr541 as low-penetrance, risk-modifying alleles. However, we did observe a trend of higher Leu217 homozygous carrier rates in patients than in control subjects. Considering the impact of genetic heterogeneity, phenocopies, and incomplete penetrance on the linkage and association studies of prostate cancer and on the power to detect linkage and association in our study sample, our results cannot rule out the possibility of a highly penetrant prostate cancer gene at this locus that only segregates in a small number of pedigrees. Nor can we rule out a prostate cancer-modifier gene that confers a lower-than-reported risk. Additional larger studies are needed to more fully evaluate the role of this gene in prostate cancer risk.