Chronic pain can be a debilitating condition, leading to profound changes in nearly every aspect of life. However, the reliance on opioids such as oxycodone for pain management is thought to initiate dependence and addiction liability. The neurobiological intersection at which opioids relieve pain a
nd possibly transition to addiction is poorly understood. Using RNA sequencing pathway analysis in rats with complete Freund's adjuvant (CFA)-induced chronic inflammation, we found that the transcriptional signatures in the medial prefrontal cortex (mPFC; a brain region where pain and reward signals integrate) elicited by CFA in combination with oxycodone differed from those elicited by CFA or oxycodone alone. However, the expression of Egr3 was augmented in all animals receiving oxycodone. Furthermore, virus-mediated overexpression of EGR3 in the mPFC increased mechanical pain relief but not the affective aspect of pain in animals receiving oxycodone, whereas pharmacological inhibition of EGR3 via NFAT attenuated mechanical pain relief. Egr3 overexpression also increased the motivation to obtain oxycodone infusions in a progressive ratio test without altering the acquisition or maintenance of oxycodone self-administration. Taken together, these data suggest that EGR3 in the mPFC is at the intersection of nociceptive and addictive-like behaviors.
Pharmacologic and genetic findings have implicated the serotonin 2A receptor (5-HT2AR) in the etiology of schizophrenia. Recent studies have shown reduced 5-HT2AR levels in schizophrenia patients, yet the cause of this difference is unknown. Environmental factors, such as stress, also influence schi
zophrenia risk, yet little is known about how environment may affect this receptor. To determine if acute stress alters 5-HT2AR expression, we examined the effect of sleep deprivation on cortical Htr2a mRNA in mice. We found that 6 h of sleep deprivation induces a twofold increase in Htr2a mRNA, a more rapid effect than has been previously reported. This effect requires the immediate early gene early growth response 3 (Egr3), as sleep deprivation failed to induce Htr2a expression in Egr3-/- mice. These findings provide a functional link between two schizophrenia candidate genes and an explanation of how environment may influence a genetic predisposition for schizophrenia.
We have previously hypothesized a biological pathway of activity-dependent synaptic plasticity proteins that addresses the dual genetic and environmental contributions to schizophrenia. Accordingly, variations in the immediate early gene EGR3, and its target ARC
, should influence schizophrenia susceptibility. We used a pooled Next-Generation Sequencing approach to identify variants across these genes in U.S. populations of European (EU) and African (AA) descent. Three EGR3 and one ARC SNP were selected and genotyped for validation, and three SNPs were tested for association in a replication cohort. In the EU group of 386 schizophrenia cases and 150 controls EGR3 SNP rs1877670 and ARC SNP rs35900184 showed significant associations (p = 0.0078 and p = 0.0275, respectively). In the AA group of 185 cases and 50 controls, only the ARC SNP revealed significant association (p = 0.0448). The ARC SNP did not show association in the Han Chinese (CH) population. However, combining the EU, AA, and CH groups revealed a highly significant association of ARC SNP rs35900184 (p = 2.353 x 10(-7); OR [95% CI] = 1.54 [1.310-1.820]). These findings support previously reported associations between EGR3 and schizophrenia. Moreover, this is the first report associating an ARC SNP with schizophrenia and supports recent large-scale GWAS findings implicating the ARC complex in schizophrenia risk. These results support the need for further investigation of the proposed pathway of environmentally responsive, synaptic plasticity-related, schizophrenia genes.
Yamagata K, etal., Learn Mem 1994 Jul-Aug;1(2):140-52.
Programs of gene activation may underlie long-term adaptive cellular responses to extracellular ligands. We have used a differential cDNA cloning strategy to identify genes that are strongly induced by excitatory stimuli in the adult rat hippocampus. Here, we report the rat cDNA sequence of a zinc-f
inger transcription factor, Egr3/Pilot, and characterize its regulated mRNA expression in brain. Egr3 mRNA is rapidly and transiently induced in neurons of the hippocampus and cortex by electroconvulsive seizure. mRNA levels peak 2 hr after the seizure and remain elevated for as long as 8 hr. Egr3 mRNA is also rapidly induced in granule cells of the dentate gyrus by synaptic NMDA receptor activation elicited by patterned stimulation of the perforant pathway and by drugs that alter dopamine neurotransmission in the striatum. Basal levels of Egr3 mRNA in the cortex appear to be driven by natural synaptic activity because monocular deprivation rapidly decreases Egr3 mRNA in the deafferented visual cortex. Aspects of the protein structure, sequence-specific DNA binding, transcriptional activity, and regulation of Egr3 are highly similar to another zinc-finger transcription factor, Egr1/zif268. Moreover, we demonstrate colocalization of Egr3 and zif268 mRNAs in neurons of normal and stimulated cortex. Our studies suggest that interactions between these coregulated transcription factors may be important in defining long-term, neuroplastic responses.