Interferon regulatory factor (IRF) family members impart cell-type specificity to toll-like receptor (TLR) signalling, and we recently identified a role for IRF6 in TLR2 signalling in epithelial cells. TLR3 has a well-characterized role in wound healing in the skin, and here, we examined TLR3-depend
ent IRF6 functions in human keratinocytes. Primary keratinocytes responded robustly to the TLR3 agonist poly(IC) with upregulation of mRNAs for interferon-beta (IFN-beta), the interleukin-12 (IL-12) family member IL-23p19 and the chemokines IL-8 and chemokine (C-C motif) ligand 5 (CCL5). Silencing of IRF6 expression enhanced poly(IC)-inducible IFN-beta mRNA levels and inhibited poly(IC)-inducible IL-23p19 mRNA expression in primary keratinocytes. Consistent with these data, co-transfection of IRF6 increased poly(IC)-inducible IL-23p19 promoter activity, but inhibited poly(IC)-inducible IFN-beta promoter activity in reporter assays. Surprisingly, poly(IC) did not regulate IL-12p40 expression in keratinocytes, suggesting that TLR3-inducible IL-23p19 may have an IL-23-independent function in these cells. The only other IL-12 family member that was strongly poly(IC) inducible was EBI3, which has not been shown to heterodimerize with IL-23p19. Both co-immunoprecipitation and proximity ligation assays revealed that IL-23p19 and EBI3 interact in cells. Co-expression of IL-23p19 and EBI3, as compared with IL-23p19 alone, resulted in increased levels of secreted IL-23p19, implying a functional role for this heterodimer. In summary, we report that IRF6 regulates a subset of TLR3 responses in human keratinocytes, including the production of a novel IL-12 family heterodimer (p19/EBI3). We propose that the TLR3-IRF6-p19/EBI3 axis may regulate keratinocyte and/or immune cell functions in the context of cell damage and wound healing in the skin.
Dokmeci E, etal., Immunology. 2011 Jan 24. doi: 10.1111/j.1365-2567.2010.03401.x.
Despite extensive investigation of the signals required for development of T helper type 1 (Th1) and type 2 (Th2) immune responses, the mechanisms involved are still not well-defined. A critical role for Epstein-Barr virus-induced gene 3 (EBI3) in these response
s has been proposed. EBI3, initially discovered as a transcriptionally activated gene in Epstein-Barr virus-infected B lymphocytes, codes for a subunit of the cytokine interleukin-27 (IL-27). While initial studies suggested that it had an important role in promoting Th1 responses, subsequent studies have revealed that EBI3 receptor signalling influences a variety of immune cell types and can inhibit both Th1 and Th2 responses. In the present study, we evaluated EBI3(-/-) mice for their ability to mount both Th1-mediated and Th2-mediated airway inflammatory responses. The EBI3(-/-) mice sensitized by exposure to inhaled ovalbumin plus a high dose of lipopolysaccharide, which normally results in Th1 responses in wild-type (WT) mice, instead developed Th2 type airway inflammation, with increased numbers of eosinophils. The EBI3(-/-) mice that were exposed to inhaled ovalbumin with a low dose of lipopolysaccharide, which induces Th2 responses in WT mice, showed a marked enhancement of these responses, with increased airway eosinophils, increased serum IgE levels and increased levels of Th2 cytokines (IL-4, IL-5 and IL-13) in culture supernatants of mediastinal lymph node cells. Increased production of Th2 cytokines was also seen when naive CD4(+) T cells from EBI3(-/-) mice were stimulated in vitro compared with cells from WT mice. These results provide the first evidence that EBI3 may play an inhibitory role in allergic asthma development.
Tuberculosis (TB) remains a major global health problem and host genetic factors play a critical role in susceptibility and resistance to TB. The aim of this study was to identify novel candidate genes associated with TB susceptibility. We performed a population-based case-control study to genotype
13 tag SNPs spanning Epstein-Barr virus-induced gene 3 (EBI3), colony stimulating factor 2 (CSF2), IL-4, interferon beta 1 (IFNB1), chemokine (C-X-C motif) ligand 14 (CXCL14) and myeloid differentiation primary response gene 88 (Myd88) genes in 435 pulmonary TB patients and 375 health donors from China. We observed that EBI3 gene rs4740 polymorphism was associated with susceptibility to pulmonary tuberculosis (PTB) and the allele G was associated with a protective effect against PTB. Furthermore, EBI3 deficiency led to reduced bacterial burden and histopathological impairment in the lung of mice infected with Mycobacterium bovis BCG. Meanwhile, higher abundance of EBI3 was observed in the granuloma of PTB patients and in the lung tissue of BCG-infected mice. Of note, the expression of EBI3 in macrophages was remarkably induced by mycobacteria infection at both mRNA and protein level. In conclusion, EBI3 gene rs4740 polymorphism is closely associated with susceptibility to PTB and the elevation and enrichment of EBI3 in the lung which at least partially derived from macrophages may contribute to the exacerbation of mycobacterial infection.
The maternal immune system must adapt to tolerate the invasion of the allogeneic feto-placental unit. It is generally accepted that improper adaptation causes pregnancy complications like preeclampsia. The Epstein-Barr virus-induced gene 3 (EBI3) protein is a
subunit of immune-modulatory cytokines interleukin 27 (IL-27) and IL-35. EBI3 has been reported to associate with HLA-G. In this small pilot study we find higher decidual EBI3 (p<0.05) and HLA-G (p<0.01) mRNA expression in preeclampsia (n=7) compared to normotensive (n=8) pregnancies. Whether the higher EBI3 and HLA-G mRNA expression is a consequence or cause of preeclampsia remains to be answered. Further research to determine the effects on IL-27 and IL-35 is needed.
Metformin (Met) has been found to modify the methylation of H19 and to alter its expression. In addition, IL-27, one of the downstream factors in the H19 signaling pathway, plays an important role in the pathogenesis of pre-eclampsia (PE). In this study, we investigated the molecular mechanism under
lying the therapeutic effect of Met in the management of PE both in vivo and in vitro. The role of H19 signaling pathway in PE was validated using online bioinformatics tools, luciferase assays, real-time PCR and Western Blot. A tail-cuff method was used to examine the blood pressures in PE rats with or without Met treatment. Cells exhibited a dose-dependent increase of H19 methylation, which inhibited the expression of H19. Additionally, upon the Met treatment, levels of miR-148-5p and miR-216-3p were both elevated in a dose-dependent manner while levels of p28 mRNA and EBI3 mRNA were both inhibited by Met treatment. Also, H19 was found to regulate the expression of miR-148a-5p and miR-216-3p, while P28 and EBI3 were respectively identified as target genes of miR-148a-5p and miR-216-3p. Therefore, the Met/H19/miR-148a-5p/P28 and Met/H19/miR-216-3p/EBI3 signaling pathways were implicated in the pathogenesis of PE. Met was implicated in the pathogenesis of PE via modulating the H19 signaling pathway. The methylation of H19 reduced H19 expression, which in turn could up-regulate the expression of miR-148-5p/miR-216-3p. And the expressions of subunits of IL-27, P28 and EBI3, were thus suppressed. Therefore, Met-induced inhibition of H19 also led to the reduction of IL-27 expression, TNF-α and IL-6 in vivo.