Tao H, etal., Int J Biol Macromol. 2016 Jan;82:68-75. doi: 10.1016/j.ijbiomac.2015.10.076. Epub 2015 Oct 25.
Cardiac fibrosis is a complex pathological process that includes the abnormal proliferation of cardiac fibroblasts and deposition of the extracellular matrix (ECM) proteins and collagens. Methyl-CpG-binding protein 2 (MeCP2) is a multifunctional nuclear protein, and plays a key role in the fibrotic
diseases. However, the potential role of MeCP2 in cardiac fibrosis remains unclear. We report that MeCP2 modulates cardiac fibrosis via down-regulation of dual-specificity phosphatase 5 (DUSP5), a nuclear phosphatase that negatively regulates prohypertrophic signaling by ERK1/2. MeCP2 is a critical participant in the epigenetic silencing of regulatory genes. Here, we found that down-regulation of DUSP5 in cardiac fibrosis is associated with MeCP2 over-expression. Treatment of cardiac fibroblasts with MeCP2-siRNA blocked proliferation. Knockdown of MeCP2 elevated DUSP5 expression in activated cardiac fibroblasts. Moreover, we investigated the effect of DUSP5 on the ERK1/2 activation. Our results demonstrated that MeCP2 modulates DUSP5 mediated activation of ERK1/2 in cardiac fibrosis. Taken together, these results indicated that MeCP2 acts as a key regulator of pathological cardiac fibrosis, promotes cardiac fibroblasts proliferation and fibrosis by down-regulation of DUSP5.
Tao H, etal., Cardiovasc Pathol. 2016 Sep-Oct;25(5):381-9. doi: 10.1016/j.carpath.2016.05.005. Epub 2016 Jun 2.
Down-regulation of DUSP5 has been shown to increase cell proliferation. DUSP5 expression is regulated through epigenetic events involving LncRNA H19 human choriocarcinoma cell line. However, the molecular mechanisms of H19 m
odulating the DUSP5 expression in cardiac fibrosis remain largely unknown. Here, we identify H19 negatively regulation of DUSP5 gene expression in cardiac fibroblast and fibrosis tissues. In vivo, the expression levels of H19, DUSP5, α-SMA, p-ERK1/2, and ERK1/2 in cardiac fibrosis tissue were estimated by Western blotting, quantitative reverse transcription-polymerase chain reaction and immunohistochemistry. In vitro stimulation of freshly isolated rat cardiac fibroblasts with recombinant marine TGF-β1 was performed, followed by quantitative reverse transcription-polymerase chain reaction and Western blotting to detect changes in H19, DUSP5, p-ERK1/2, and ERK1/2 levels. Cardiac fibroblasts were transfected with pEX-3-H19 overexpressing, H19-RNAi down-regulating, or pEGFP-C1-DUSP5 overexpressing. Finally, cell proliferation was assessed by the MTT assay and cell cycle. H19 endogenous expression is overexpressed in cardiac fibroblast and fibrosis tissues, and an opposite pattern is observed for DUSP5. H19 ectopic overexpression reduces DUSP5 abundance and increases the proliferation of cardiac fibroblast, whereas H19 silencing causes the opposite effects. In a broader perspective, these results demonstrated that LncRNA H19 contributes to cardiac fibroblast proliferation and fibrosis, which act in part through repression of DUSP5/ERK1/2.
Song Z, etal., Toxicol Appl Pharmacol. 2019 Feb 1;364:45-54. doi: 10.1016/j.taap.2018.12.002. Epub 2018 Dec 5.
Defective autophagy in vascular smooth muscle cells (VSMCs) is the principal cause of atherosclerosis. This study aimed to investigate the effect of astragaloside IV (AS-IV) on VSMCs autophagy. In vivo, ApoE-/- mice were fed with high-fat diet ad libitum for eight weeks, with or without AS-IV (25 mg
/kg, daily). In vitro, human VSMCs were cultured and treated with β-Glycerophosphate (10 mmol/L) and AS-IV (50 μg/ml). VSMCs autophagy, mineralization, expression of p-ERK1/2, p-mTOR, and autophagy-related proteins (LC3 II/I, p62, and Beclin 1) were detected. Increased autophagy and mineralization was observed in VSMCs in thoracic aorta of mice and in in vitro VSMCs model of atherosclerosis. AS-IV administration attenuated the autophagy and mineralization in VSMCs. Reverse expression profiles of H19 and DUSP5 were observed. AS-IV inhibited DUSP5 and autophagy-related proteins and increased expression of H19, level of p-ERK1/2 and p-mTOR. Further, autophagy and mineralization level in VSMCs were in line with DUSP5 expression level, but in contrast to H19, p-ERK1/2, and p-mTOR profiles. We demonstrated that AS-IV could attenuate autophagy and mineralization of VSMCs in atherosclerosis, which may be associated with H19 overexpression and DUSP5 inhibition.