BACKGROUND: 46,XY disorders of sex development (DSD) comprise a heterogeneous group of congenital conditions. Mutations in a variety of genes can affect gonadal development or androgen biosynthesis/action and thereby influence the development of the internal and external genital organs.... (more)
r>OBJECTIVE: The objective of the study was to identify the genetic cause in two 46,XY sisters of a consanguineous family with DSD and gonadal tumor formation. METHODS: We used a next-generation sequencing approach by exome sequencing. Electrophysiological and high-resolution ultrasound examination of peripheral nerves as well as histopathological examination of the gonads were performed. RESULTS: We identified a novel homozygous R124Q mutation in the desert hedgehog gene (DHH), which alters a conserved residue among the three mammalian Hedgehog ligands sonic hedgehog, Indian hedgehog, and desert hedgehog. No other relevant mutations in DSD-related genes were encountered. The gonads of one patient showed partial gonadal dysgenesis with loss of Leydig cells in tubular areas with seminoma in situ and a hyperplasia of Leydig cell-like cells expressing CYP17A1 in more dysgenetic parts of the gonad. In addition, both patients suffer from a polyneuropathy. High-resolution ultrasound revealed a structural change of peripheral nerve structure that fits well to a minifascicle formation of peripheral nerves. CONCLUSION: Mutations in DHH play a role in 46,XY gonadal dysgenesis and are associated with seminoma formation and a neuropathy with minifascicle formation. Gonadal dysgenesis in these cases may be due to impairment of Sertoli cell-Leydig cell interaction during gonadal development.
Kawai Y, etal., Reproduction. 2011 Feb;141(2):217-25. doi: 10.1530/REP-10-0006. Epub 2010 Nov 9.
Development of the male gonads is a complex process with interaction of various cells in the gonads including germ, Sertoli, Leydig, and myoid cells. TF is a mutant rat strain showing male pseudohermaphroditism, with agenesis of Leydig cells and androgen deficiency controlled by an autosomal single
recessive gene (mp). The mp locus was mapped on the distal region of rat chromosome 7 by linkage analysis, but the gene responsible for the mp mutation has not been identified. In this study, we performed fine linkage mapping and sequence analysis to determine the causative gene of the mp mutation, and performed an immunohistochemical study using a Leydig cell-specific marker to investigate detailed phenotypes of the mutant rats during the testicular development. As a result, we found a missense mutation of the gene encoding Desert hedgehog (Dhh) in the mutant rat, which could result in loss of function of the DHH signaling pathway. Histochemical examination revealed remarkably reduced number of fetal Leydig cells and lack of typical spindle-shaped adult Leydig cell in the mp/mp rats. These phenotypes resembled those of the Dhh-null mice. Additionally, testosterone levels were significantly lower in the mp/mp fetus, indicating androgen deficiency during embryonic development. These results indicate that the mutation of the Dhh gene may be responsible for the pseudohermaphrodite phenotypes of the mutant rat, and that the Dhh gene is probably essential for the development of Leydig cells.
Mutations of SRY are the cause of complete pure gonadal dysgenesis (PGD) in 10-15% of patients. In the remaining individuals, it has been suggested that mutations in other genes involved in the testis-determining pathway could be causative. We describe the first report in which three cases of 46,XY
complete PGD are attributed to mutations of the Desert hedgehog (DHH) gene. DHH was sequenced using genomic DNA from paraffin-embedded gonadal tissue from six patients with complete 46,XY PGD. Mutations were found in three patients: a homozygous mutation in exon 2, responsible for a L162P, and a homozygous 1086delG in exon 3. Mutated individuals displayed 46,XY complete PGD, differentiating from the only previously described patient with a homozygous DHH mutation, who exhibited a partial form of PGD with polyneuropathy, suggesting that localization of mutations influence phenotypic expression. This constitutes the first report where mutations of DHH are associated with the presence of 46,XY complete PGD, demonstrating that the genetic origin of this entity is heterogeneous and that disorders in other genes, different from SRY, involved in the testis-determining pathway are implicated in abnormal testicular differentiation in humans. These data extend previous reports demonstrating DHH is a key gene in gonadal differentiation.
Katayama S, etal., Toxicol Appl Pharmacol. 2006 Dec 15;217(3):375-83. Epub 2006 Oct 6.
The objective of this study was to investigate the effects of estrogen receptor (ER) agonists and an ER antagonist on the expression of Hedgehog genes (Indian hedgehog: Ihh; Desert hedgehog: Dhh) and Hedgehog target genes (Patched 1: Ptc1; glioma-associated onco
gene homolog 1: Gli1; chicken ovalbumin upstream promoter transcription factor II: Coup-TfII) in the rat uterus. Immature female rats were administered once with 17alpha-ethynyl estradiol (EE, an ER agonist), propyl pyrazole triole (PPT, an ERalpha-selective agonist), diarylpropionitrile (DPN, an ERbeta-selective agonist), or ICI 182,780 (an ER antagonist). Expression of mRNA for Ihh, Dhh, and Ptc1 was dose-dependently downregulated by EE in the uterus of immature rats, mediated by ER as confirmed by coadministration of ICI 182,780. The mRNA expression levels of Ptc1, Gli1, and Coup-TfII were simultaneously downregulated during the period in which the mRNA expression levels of Ihh and Dhh were downregulated in the uterus after administration of EE. PPT downregulated the transcription of Ihh, Dhh, Ptc1, Gli1, and Coup-TfII, indicating that expression of these genes was regulated by the ERalpha-dependent pathway. DPN also downregulated the transcription of Ihh and Dhh, although the effect was weaker than that of PPT, indicating that the regulation of uterine Ihh and Dhh transcription was also affected by the ERbeta-dependent pathway. These results suggest that the expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats.
Synaptic plasticity is mediated by the dynamic localization of proteins to and from synapses. This is controlled, in part, through activity-induced palmitoylation of synaptic proteins. Here we report that the ability of the palmitoyl-acyl transferase, DHHC5, to
palmitoylate substrates in an activity-dependent manner is dependent on changes in its subcellular localization. Under basal conditions, DHHC5 is bound to PSD-95 and Fyn kinase, and is stabilized at the synaptic membrane through Fyn-mediated phosphorylation of a tyrosine residue within the endocytic motif of DHHC5. In contrast, DHHC5's substrate, delta-catenin, is highly localized to dendritic shafts, resulting in the segregation of the enzyme/substrate pair. Neuronal activity disrupts DHHC5/PSD-95/Fyn kinase complexes, enhancing DHHC5 endocytosis, its translocation to dendritic shafts and its association with delta-catenin. Following DHHC5-mediated palmitoylation of delta-catenin, DHHC5 and delta-catenin are trafficked together back into spines where delta-catenin increases cadherin stabilization and recruitment of AMPA receptors to the synaptic membrane.
Protein palmitoylation is the most common posttranslational lipid modification; its reversibility mediates protein shuttling between intracellular compartments. A large family of DHHC (Asp-His-His-Cys) proteins has emerged as protein palmitoyl acyltransferases (
PATs). However, mechanisms that regulate these PATs in a physiological context remain unknown. In this study, we efficiently monitored the dynamic palmitate cycling on synaptic scaffold PSD-95. We found that blocking synaptic activity rapidly induces PSD-95 palmitoylation and mediates synaptic clustering of PSD-95 and associated AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors. A dendritically localized DHHC2 but not the Golgi-resident DHHC3 mediates this activity-sensitive palmitoylation. Upon activity blockade, DHHC2 translocates to the postsynaptic density to transduce this effect. These data demonstrate that individual DHHC members are differentially regulated and that dynamic recruitment of protein palmitoylation machinery enables compartmentalized regulation of protein trafficking in response to extracellular signals.
Thomas GM, etal., Neuron. 2012 Feb 9;73(3):482-96. doi: 10.1016/j.neuron.2011.11.021.
Palmitoylation, a key regulatory mechanism controlling protein targeting, is catalyzed by DHHC-family palmitoyl acyltransferases (PATs). Impaired PAT activity is linked to neurodevelopmental and neuropsychiatric disorders, suggesting critical roles for palmitoyl
ation in neuronal function. However, few substrates for specific PATs are known, and functional consequences of palmitoylation events are frequently uncharacterized. Here, we identify the closely related PATs DHHC5 and DHHC8 as specific regulators of the PDZ domain protein GRIP1b. Binding, palmitoylation, and dendritic targeting of GRIP1b require a PDZ ligand unique to DHHC5/8. Palmitoylated GRIP1b is targeted to trafficking endosomes and may link endosomes to kinesin motors. Consistent with this trafficking role, GRIP1b's palmitoylation turnover rate approaches the highest of all reported proteins, and palmitoylation increases GRIP1b's ability to accelerate AMPA-R recycling. To our knowledge, these findings identify the first neuronal DHHC5/8 substrate, define novel mechanisms controlling palmitoylation specificity, and suggest further links between dysregulated palmitoylation and neuropathological conditions.
Covalent lipid modifications mediate the membrane attachment and biological activity of Ras proteins. All Ras isoforms are farnesylated and carboxyl-methylated at the terminal cysteine; H-Ras and N-Ras are further modified by palmitoylation. Yeast Ras is palmitoylated by the DHH
:700;'>DHHC cysteine-rich domain-containing protein Erf2 in a complex with Erf4. Here we report that H- and N-Ras are palmitoylated by a human protein palmitoyltransferase encoded by the ZDHHC9 and GCP16 genes. DHHC9 is an integral membrane protein that contains a DHHC cysteine-rich domain. GCP16 encodes a Golgi-localized membrane protein that has limited sequence similarity to yeast Erf4. DHHC9 and GCP16 co-distribute in the Golgi apparatus, a location consistent with the site of mammalian Ras palmitoylation in vivo. Like yeast Erf2.Erf4, DHHC9 and GCP16 form a protein complex, and DHHC9 requires GCP16 for protein fatty acyltransferase activity and protein stability. Purified DHHC9.GCP16 exhibits substrate specificity, palmitoylating H- and N-Ras but not myristoylated G (alphai1) or GAP-43, proteins with N-terminal palmitoylation motifs. Hence, DHHC9.GCP16 displays the properties of a functional human ortholog of the yeast Ras palmitoyltransferase.
R7BP (RGS7 family-binding protein) has been proposed to function in neurons as a palmitoylation-regulated protein that shuttles heterodimeric, G(i/o)α-specific GTPase-activating protein (GAP) complexes composed of Gß5 and RGS7 (R7) isoforms between the plasma membrane and nucleus. To test this
hypothesis we studied R7BP palmitoylation and localization in neuronal cells. We report that R7BP undergoes dynamic, signal-regulated palmitate turnover; the palmitoyltransferase DHHC2 mediates de novo and turnover palmitoylation of R7BP; DHHC2 silencing redistributes R7BP from the plasma membrane to the nucleus; and G(i/o) signaling inhibits R7BP depalmitoylation whereas G(i/o) inactivation induces nuclear accumulation of R7BP. In concert with previous evidence, our findings suggest that agonist-induced changes in palmitoylation state facilitate GAP action by (i) promoting Giα depalmitoylation to create optimal GAP substrates, and (ii) inhibiting R7BP depalmitoylation to stabilize membrane association of R7-Gß5 GAP complexes. Regulated palmitate turnover may also enable R7BP-bound GAPs to shuttle between sites of low and high G(i/o) activity or the plasma membrane and nucleus, potentially providing spatio-temporal control of signaling by G(i/o)-coupled receptors.
Protein palmitoylation, a common post-translational lipid modification, plays an important role in protein trafficking and functions. Recently developed palmitoyl-proteomic methods identified many novel substrates. However, the whole picture of palmitoyl substrates has not been clarified. Here, we p
erformed global in silico screening using the CSS-Palm 2.0 program, free software for prediction of palmitoylation sites, and selected 17 candidates as novel palmitoyl substrates. Of the 17 candidates, 10 proteins, including 6 synaptic proteins (Syd-1, transmembrane AMPA receptor regulatory protein (TARP) γ-2, TARP γ-8, cornichon-2, Ca(2+)/calmodulin-dependent protein kinase IIα, and neurochondrin (Ncdn)/norbin), one focal adhesion protein (zyxin), two ion channels (TRPM8 and TRPC1), and one G-protein-coupled receptor (orexin 2 receptor), were palmitoylated. Using the DHHC palmitoylating enzyme library, we found that all tested substrates were palmitoylated by the Golgi-localized DHHC3/7 subfamily. Ncdn, a regulator for neurite outgrowth and synaptic plasticity, was robustly palmitoylated by the DHHC1/10 (zDHHC1/11; z1/11) subfamily, whose substrate has not yet been reported. As predicted by CSS-Palm 2.0, Cys-3 and Cys-4 are the palmitoylation sites for Ncdn. Ncdn was specifically localized in somato-dendritic regions, not in the axon of rat cultured neurons. Stimulated emission depletion microscopy revealed that Ncdn was localized to Rab5-positive early endosomes in a palmitoylation-dependent manner, where DHHC1/10 (z1/11) were also distributed. Knockdown of DHHC1, -3, or -10 (z11) resulted in the loss of Ncdn from Rab5-positive endosomes. Thus, through in silico screening, we demonstrate that Ncdn and the DHHC1/10 (z1/11) and DHHC3/7 subfamilies are novel palmitoyl substrate-enzyme pairs and that Ncdn palmitoylation plays an essential role in its specific endosomal targeting.
Targeting of neuronal nitric-oxide synthase (nNOS) to appropriate sites in a cell is mediated by interactions with its PDZ domain and plays an important role in specifying the sites of reaction of nitric oxide (NO) in the central nervous system. Here we report the identification and characterization
of a novel nNOS-interacting DHHC domain-containing protein with dendritic mRNA (NIDD) (GenBank accession number AB098078), which increases nNOS enzyme activity by targeting the nNOS to the synaptic plasma membrane in a PDZ domain-dependent manner. The deduced NIDD protein consisted of 392 amino acid residues and possessed five transmembrane segments, a zinc finger DHHC domain, and a PDZ-binding motif (-EDIV) at its C-terminal tail. In vitro pull-down assays suggested that the C-terminal tail region of NIDD specifically interacted with the PDZ domain of nNOS. The PDZ dependence was confirmed by an experiment using a deletion mutant, and the interaction was further confirmed by co-sedimentation assays using COS-7 cells transfected with NIDD and nNOS. Both NIDD and nNOS were enriched in synaptosome and synaptic plasma membrane fractions and were present in the lipid raft and postsynaptic density fractions in the rat brain. Co-localization of these proteins was also observed by double staining of the proteins in cultured cortical neurons. Thus, NIDD and nNOS were co-localized in the brain, although the colocalizing regions were restricted, as indicated by the distribution of their mRNA expression. Most important, co-transfection of NIDD and nNOS increased NO-producing nNOS activity. These results suggested that NIDD plays an important role in the regulation of the NO signaling pathway at postsynaptic sites through targeting of nNOS to the postsynaptic membrane.
Gottlieb CD, etal., J Biol Chem. 2015 Dec 4;290(49):29259-69. doi: 10.1074/jbc.M115.691147. Epub 2015 Oct 20.
DHHC palmitoyltransferases catalyze the addition of the fatty acid palmitate to proteins on the cytoplasmic leaflet of cell membranes. There are 23 members of the highly diverse mammalian DHHC protein family, all of which co
ntain a conserved catalytic domain called the cysteine-rich domain (CRD). DHHC proteins transfer palmitate via a two-step catalytic mechanism in which the enzyme first modifies itself with palmitate in a process termed autoacylation. The enzyme then transfers palmitate from itself onto substrate proteins. The number and location of palmitoylated cysteines in the autoacylated intermediate is unknown. In this study, we present evidence using mass spectrometry that DHHC3 is palmitoylated at the cysteine in the DHHC motif. Mutation of highly conserved CRD cysteines outside the DHHC motif resulted in activity deficits and a structural perturbation revealed by limited proteolysis. Treatment of DHHC3 with chelating agents in vitro replicated both the specific structural perturbations and activity deficits observed in conserved cysteine mutants, suggesting metal ion-binding in the CRD. Using the fluorescent indicator mag-fura-2, the metal released from DHHC3 was identified as zinc. The stoichiometry of zinc binding was measured as 2 mol of zinc/mol of DHHC3 protein. Taken together, our data demonstrate that coordination of zinc ions by cysteine residues within the CRD is required for the structural integrity of DHHC proteins.
Woolfrey KM, etal., J Neurosci. 2015 Jan 14;35(2):442-56. doi: 10.1523/JNEUROSCI.2243-14.2015.
Phosphorylation and dephosphorylation of AMPA-type ionotropic glutamate receptors (AMPARs) by kinases and phosphatases and interactions with scaffold proteins play essential roles in regulating channel biophysical properties and trafficking events that control synaptic strength during NMDA receptor-
dependent synaptic plasticity, such as LTP and LTD. We previously demonstrated that palmitoylation of the AMPAR-linked scaffold protein A-kinase anchoring protein (AKAP) 79/150 is required for its targeting to recycling endosomes in dendrites, where it regulates exocytosis from these compartments that is required for LTP-stimulated enlargement of postsynaptic dendritic spines, delivery of AMPARs to the plasma membrane, and maintenance of synaptic potentiation. Here, we report that the recycling endosome-resident palmitoyl acyltransferase DHHC2 interacts with and palmitoylates AKAP79/150 to regulate these plasticity signaling mechanisms. In particular, RNAi-mediated knockdown of DHHC2 expression in rat hippocampal neurons disrupted stimulation of exocytosis from recycling endosomes, enlargement of dendritic spines, AKAP recruitment to spines, and potentiation of AMPAR-mediated synaptic currents that occur during LTP. Importantly, expression of a palmitoylation-independent lipidated AKAP mutant in DHHC2-deficient neurons largely restored normal plasticity regulation. Thus, we conclude that DHHC2-AKAP79/150 signaling is an essential regulator of dendritic recycling endosome exocytosis that controls both structural and functional plasticity at excitatory synapses.
Intracellular palmitoylation dynamics are regulated by a large family of DHHC (Asp-His-His-Cys) palmitoyl transferases. The majority of DHHC proteins associate with endoplasmic reticulum (ER) or Golgi membranes, but an inter
esting exception is DHHC2, which localizes to dendritic vesicles of unknown origin in neurons, where it regulates dynamic palmitoylation of PSD95. Dendritic targeting of newly synthesized PSD95 is likely preceded by palmitoylation on Golgi membranes by DHHC3 and/or DHHC15. The precise intracellular distribution of DHHC2 is presently unclear, and there is very little known in general about how DHHC proteins achieve their respective localizations. In this study, membrane targeting of DHHC2 in live and fixed neuroendocrine cells was investigated and mutational analysis employed to define regions of DHHC2 that regulate targeting. We report that DHHC2 associates with the plasma membrane, Rab11-positive recycling endosomes, and vesicular structures. Plasma membrane integration of DHHC2 was confirmed by labeling of an extrafacial HA epitope in nonpermeabilized cells. Antibody-uptake experiments suggested that DHHC2 traffics between the plasma membrane and intracellular membranes. This dynamic localization was confirmed using fluorescence recovery after photo-bleaching analysis, which revealed constitutive refilling of the recycling endosome (RE) pool of DHHC2. The cytoplasmic C-terminus of DHHC2 regulates membrane targeting and a mutant lacking this domain was associated with the ER. Although DHHC2 is closely related to DHHC15, these proteins populate distinct membrane compartments. Construction of chimeric DHHC2/DHHC15 proteins revealed that this difference in localization is a consequence of divergent sequences within their C-terminal tails. This study is the first to highlight dynamic cycling of a mammalian DHHC protein between clearly defined membrane compartments, and to identify domains that specify membrane targeting of this protein family.