BACKGROUND: The induction of excess matrix in renal fibrosis seems to be mediated, at least in part, by the transforming growth factor-beta (TGF-beta)-mediated induction of connective tissue growth factor (CTGF) in mesangial cells. METHODS: By examining CTGF
yle='font-weight:700;'>CTGF protein and mRNA expression and promoter activity in the presence or absence of TGF-beta or inhibitors, the signaling pathways controlling basal and TGF-beta-induced CTGF expression in mesangial cells were investigated. RESULTS: TGF-beta enhances CTGF mRNA and protein expression in mesangial cells. Mutation of a consensus SMAD binding element in the CTGF promoter completely abolished TGF-beta-induced CTGF expression and reduced basal CTGF expression. The previously identified basal control element-1 (BCE-1) site, but not Sp1 contributes to basal CTGF promoter activity. Ras/MEK/ERK, protein kinase C (PKC) and tyrosine kinase activity also contribute to basal and TGF-beta-induced CTGF promoter activity in cultured mesangial cells. CONCLUSIONS: The TGF-beta-induction of CTGF in mesangial cells requires SMADs and PKC/ras/MEK/ERK pathways. SMADs are involved in basal CTGF expression, which presumably reflects the fact that mesangial cells express TGF-beta endogenously. TGF-beta also induces CTGF through ras/MEK/ERK. Inhibiting ras/MEK/ERK seems not to reduce phosphorylation (that is, activation) of SMADs, suggesting that SMADs, although necessary, are insufficient for the TGF-beta-stimulation of the CTGF promoter through ras/MEK/ERK. Thus, maximal TGF-beta induction of CTGF requires synergy between SMAD and ras/MEK/ERK signaling.
It is thought that a shallow invasion of the maternal decidua by extravillous trophoblasts (EVT) is associated with the development of pre-eclampsia. Here, we focus on the expression of the proangiogenic proteins Cyr61 and CTGF in the human placenta during norma
l pregnancy compared with that in the late pre-eclamptic placenta. Cyr61 and CTGF are expressed in the extravillous trophoblast and in endothelial cells. We found the expression of Cyr61 was significantly decreased in pre-eclamptic placentas compared with matched controls. In contrast, the CTGF expression level was upregulated in pre-eclamptic placentas. There was a negative correlation between Cyr61 and CTGF. These results suggest that decreased Cyr61 and overexpressed CTGF may play a part in the development of pre-eclampsia.
Pi L, etal., J Cell Commun Signal. 2023 Mar;17(1):137-150. doi: 10.1007/s12079-022-00713-y. Epub 2022 Dec 5.
Liver fibrosis is the common outcome of many chronic liver diseases, resulting from altered cell-cell and cell-matrix interactions that promote hepatic stellate cell (HSC) activation and excessive matrix production. This study aimed to investigate functions of cellular communication network factor 2
(CCN2)/Connective tissue growth factor (CTGF), an extracellular signaling modulator of the CYR61/CTGF/Nov (CCN) family, in liver fibrosis. Tamoxifen-inducible conditional knockouts in mice and hepatocyte-specific deletion of this gene in rats were generated using the Cre-lox system. These animals were subjected to peri-central hepatocyte damage caused by carbon tetrachloride. Potential crosstalk of this molecule with a new profibrotic pathway mediated by the Slit2 ligand and Roundabout (Robo) receptors was also examined. We found that Ccn2/Ctgf was highly upregulated in periportal hepatocytes during carbon tetrachloride-induced hepatocyte damage, liver fibrosis and cirrhosis in mice and rats. Overexpression of this molecule was observed in human hepatocellular carcinoma (HCC) that were surrounded with fibrotic cords. Deletion of the Ccn2/Ctgf gene significantly reduced expression of fibrosis-related genes including Slit2, a smooth muscle actin (SMA) and Collagen type I during carbon tetrachloride-induced liver fibrosis in mice and rats. In addition, Ccn2/Ctgf and its truncated mutant carrying the first three domains were able to interact with the 7th -9th epidermal growth factor (EGF) repeats and the C-terminal cysteine knot (CT) motif of Slit2 protein in cultured HSC and fibrotic murine livers. Ectopic expression of Ccn2/Ctgf protein upregulated Slit2, promoted HSC activation, and potentiated fibrotic responses following chronic intoxication by carbon tetrachloride. Moreover, Ccn2/Ctgf and Slit2 synergistically enhanced activation of phosphatidylinositol 3-kinase (PI3K) and AKT in primary HSC, whereas soluble Robo1-Fc chimera protein could inhibit these activities. These observations demonstrate conserved cross-species functions of Ccn2/Ctgf protein in rodent livers. This protein can be induced in hepatocytes and contribute to liver fibrosis. Its novel connection with the Slit2/Robo signaling may have therapeutic implications against fibrosis in chronic liver disease.
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). The development and progression of DN might involve multiple factors. Connective tissue growth factor (CCN2, originally known as CTGF) is the one which plays a pivotal role. There
fore, increasing attention is being paid to CCN2 as a potential therapeutic target for DN. Up to date, there are also many drugs or agents which have been shown for their protective effects against DN via different mechanisms. In this review, we only focus on the potential renoprotective therapeutic agents which can specifically abolish CCN2 expression or nonspecifically inhibit CCN2 expression for retarding the development and progression of DN.
BACKGROUND: In addition to the activation of hepatic stellate cells TGF-beta govern apoptosis and growth control of hepatocytes in liver injury. In non-parenchymal cells, TGF-beta induces plasminogen activator inhibitor 1 (PAI-1) and connective tissue growth factor (CTGF
GF) expression, which are involved in extra cellular matrix formation. Both genes were also regulated by glucocorticoids, which in certain cases showed antagonistic effects to the TGF-beta-Smad 3 pathway. The purpose of our work was to investigate the influence of TGF-beta and dexamethasone on PAI-1 and CTGF expression and secretion in primary hepatocytes. RESULTS: By examining PAI-1 and CTGF mRNA and protein expression in cell lysates and cell-conditioned media under the influence of TGF-beta and dexamethasone, we analysed signalling pathways controlling their expression. TGF-beta and dexamethasone significantly co-induce PAI-1 and CTGF protein expression. On the other hand, we showed that TGF-beta diminished a glucocorticoid receptor dependent luciferase reporter signal in Hep-G2. Inhibition of Erk downstream activation decreased TGF-beta induced CTGF and PAI-1 expression to a basal level. PAI-1 was directly secreted by hepatocytes, whereas secretion of CTGF was retarded. CONCLUSION: The data provide evidence that beside the TGF-beta-Smad 3 pathway CTGF and PAI-1 expression is additionally dependent on Erk activity in hepatocytes giving new insights into regulation of the profibrogenic proteins.
Chaqour B, etal., Am J Physiol Endocrinol Metab 2002 Oct;283(4):E765-74.
Cysteine-rich protein (Cyr61) and connective tissue growth factor (CTGF) are key immediate early growth factors with functions in cell proliferation, differentiation, and extracellular matrix synthesis. Studies were performed to assess the gene expression profil
e of Cyr61 and CTGF in rat urinary bladder during growth in response to partial outlet obstruction. The mRNA levels of Cyr61 as determined by ribonuclease protection assay increased sharply after 1 day and remained elevated throughout the time period of the obstruction. This correlates well with increased bladder weight. The CTGF mRNA levels seemed to peak within the second week of the urethral obstruction and correlate well with increased type I collagen mRNA. The expression pattern of either Cyr61 or CTGF proteins corroborated that of their respective mRNAs. Immunohistochemical analyses showed that immunoreactivity of Cyr61 was confined to detrusor smooth muscle and that of CTGF was detected within both detrusor muscle and lamina propria layers. These data strongly indicate the involvement of Cyr61 and CTGF in bladder wall remodeling as a result of the outlet obstruction.
Primordial follicle assembly is a process that occurs when oocyte nests break down to form individual primordial follicles. The size of this initial pool of primordial follicles in part determines the reproductive lifespan of the female. Connective tissue growth factor (CTGF
'>CTGF) was identified as a potential regulatory candidate for this process in a previous microarray analysis of follicle development. The current study examines the effects of CTGF and associated transforming growth factor beta 1 (TGFβ-1) on follicle assembly. Ovaries were removed from newborn rat pups and placed in an organ culture system. The ovaries treated with CTGF for two days were found to have an increased proportion of assembled follicles. CTGF was found to regulate the ovarian transcriptome during primordial follicle assembly and an integrative network of genes was identified. TGFβ-1 had no effect on primordial follicle assembly and in combination with CTGF decreased oocyte number in the ovary after two days of culture. Over ten days of treatment only the combined treatment of CTGF and TGFβ-1 was found to cause an increase in the proportion of assembled follicles. Interestingly, treatment with TGFβ-1 alone resulted in fewer total oocytes in the ovary and decreased the primordial follicle pool size after ten days of culture. Observations indicate that CTGF alone or in combination with TGFβ-1 stimulates primordial follicle assembly and TGFβ-1 can decrease the primordial follicle pool size. These observations suggest the possibility of manipulating primordial follicle pool size and influencing female reproductive lifespan.
The mechanism of miR-30a in myocardial fibrosis in rats with myocardial infarction (MI) was investigated. rAAV9-miR-30a was constructed and transfected to heart via injecting into the left ventricular cavity of MI rats. The sham operation group, control group, miR-30a group and miR-30a-NC group were
established. Besides, the 3'-UTR of CTGF was inserted into luciferase expression plasmid (pMir-report), then transfected into COS1 cells. miR-30a and control miRNA were, respectively, cotransfected into COS1 cells. The expression of luciferase was detected before and after knockdown of the binding site of miR-30a and the 3'-UTR of CTGF. Four weeks after MI surgery, cardiac function was measured by color Doppler echocardiography, including short axis shortening (FS) and left ventricular ejection fraction (LVEF); the myocardial collagen volume fraction (CVF) was observed by Masson's staining; deposition of collagen I and collagen III were evaluated by immunohistochemical stain; using real-time PCR to detect expression levels of miR-30a and CTGF; the expression of CTGF was observed by western blotting. In MI group, cardiac function was significantly improved, while the expression levels of CVF, collagen I and III, the ratio of type I/III collagen, CTGF were significantly reduced. After knockdown the binding site of miR-30a and the 3'-UTR of CTGF, luciferase expression in COS1 cells decreased significantly. miR-30a might inhibit the expression of CTGF by directly combining with the 3'-UTR site of CTGF after MI, thereby reduce the production of collagen in myocardia, inhibit myocardial fibrosis, then improve cardiac function.
Extracellular matrix accumulation and fibrosis are the features of diabetic nephropathy. PI3K (phosphatidylinositol 3-kinase)/Akt (protein kinase B) signal pathway and its inhibitor PTEN (phosphatase and tensin homolog deleted on chromosome 10) are revealed to modulate renal fibrosis. However, the e
xact mechanism is still not well known. In the present study we found that compared with normal mice, diabetic mice showed decreased PTEN, increased phospho-Akt (Ser 473), phospho-Akt (Thr 308), CTGF (connective tissue growth factor), a-SMA (a-smooth muscle actin), and matricellular protein in kidney. Knocking down of PTEN caused an increase in phospho-Akt (Ser 473), phospho-Akt (Thr 308), CTGF, secreted fibronectin, and secreted Col 3 in HKC cells (human renal tubular epithelial cells). Again, in vitro experiment revealed 1.89, 2.18, 1.92, 3.06, 2.06-fold increases of phospho-Akt (Ser 473), phospho-Akt (Thr 308), CTGF, secreted fibronectin, and secreted Col 3 in high glucose-stimulated HKC cells in comparison with normal control cells. Furthermore, knocking down of CTGF reversed increased secreted fibronectin and Col 3 in high glucose-treated HKC cells. Moreover, transfection of PTEN expression vector prevented high glucose-caused these changes in HKC cells. Especially, CTGF expression, secretion of fibronectin and Col 3 were, respectively, decreased by 38.81, 53.85, and 39.12%. The treatment of LY294002 inhibited phospho-Akt (Ser 473) and phospho-Akt (Thr 308) expression followed by decreased CTGF, secretory fibronectin and secretory Col 3 in high glucose-treated HKC cells. In the end our study suggests that PTEN regulates renal extracellular matrix production via activated Akt and increased CTGF in diabetes mellitus.
OBJECTIVE: CCN family member 2/connective tissue growth factor (CCN2/CTGF) is known as an osteogenesis-related molecule and is thought to be implicated in tooth growth. Bone morphogenetic protein-1 (BMP-1) contributes to tooth development by the degra
dation of dentin-specific substrates as a metalloprotease. In this study, we demonstrated the correlations between CCN2/CTGF and BMP-1 in human carious teeth and the subcellular dynamics of BMP-1 in human dental pulp cells. MATERIALS AND METHODS: Expression of CCN2/CTGF and BMP-1 in human carious teeth was analyzed by immunohistochemistry. BMP-1-induced CCN2/CTGF protein expression in primary cultures of human dental pulp cells was observed by immunoblotting. Intracellular dynamics of exogenously administered fluorescence-labeled BMP-1 were observed using confocal microscope. RESULTS: Immunoreactivities for CCN2/CTGF and BMP-1 were increased in odontoblast-like cells and reparative dentin-subjacent dental caries. BMP-1 induced the expression of CCN2/CTGF independently of protease activity in the cells but not that of dentin sialophosphoprotein (DSPP) or dentin matrix protein-1 (DMP-1). Exogenously added BMP-1 was internalized into the cytoplasm, and the potent dynamin inhibitor dynasore clearly suppressed the BMP-1-induced CCN2/CTGF expression in the cells. CONCLUSION: CCN2/CTGF and BMP-1 coexist beneath caries lesion and CCN2/CTGF expression is regulated by dynamin-related cellular uptake of BMP-1, which suggests a novel property of metalloprotease in reparative dentinogenesis.
Alaee M, etal., Horm Mol Biol Clin Investig. 2021 May 20;42(2):167-174. doi: 10.1515/hmbci-2020-0072.
OBJECTIVES: Diabetic nephropathy is one of the major complications of diabetes, the use of medicinal plants is increasing due to fewer side effects. This study was designed to examine antidiabetic effects of Allium jesdianum (A. jesdianum) ethanolic extract and evaluate its effects on oxi
dative stress markers and the expression of connective tissue growth factor (CTGF) and receptor for advanced glycation endproducts (RAGE) genes in the kidney of type 1 diabetic rats. METHODS: In this study, we randomly divided 24 rats into four groups with six rats in each group as follows: Cnt group: normal control receiving normal saline, Dibt group: diabetic control receiving normal saline daily, Dibt + A. jesdianum 250 group: diabetic rats receiving A. jesdianum at a dose of 250 mg/kg bw daily, Dibt + A. jesdianum 500 group: diabetic rats receiving A. jesdianum at a dose of 500 mg/kg bw daily. To induce diabetes, we used 55 mg/kg bw dose of streptozotocin intraperitoneally. The concentration of fasting blood glucose (FBG) and serum urea, creatinine and albumin, SOD, MDA (using spectrophotometric methods) and gene expression of CTGF and RAGE in kidney tissue (using real-time PCR methods) were quantified in the diabetic rats that received A. jesdianum for 42 days, and were compared to control rats. RESULTS: The results showed that in the diabetic group the FBG and serum urea, creatinine and expression of kidney CTGF and RAGE genes and the levels of SOD and MDA significantly increased and serum albumin significantly decreased compared to the Cnt group (p<0.001). Administration of A. jesdianum significantly improved the FBG and serum urea, creatinine and albumin compared to Dibt group (p<0.05). It was shown the A. jesdianum significantly decrease the kidney expression levels of CTGF and RAGE genes and improve oxidative stress (increased SOD and decreased MDA) in the kidney tissues when compared to Dibt group (p<0.001). Also, it was found that the beneficial effects of the A. jesdianum were dose-dependent. CONCLUSIONS: The results of this study showed that administration of A. jesdianum for 42 days has beneficial anti-diabetic and anti-nephropathic effects in diabetic rats and can be used as an adjunct therapy in the treatment of diabetes.
Kundi R, etal., Cardiovasc Res. 2009 Nov 1;84(2):326-35. Epub 2009 Jul 1.
AIMS: Although transforming growth factor-beta (TGF-beta) is believed to stimulate intimal hyperplasia after arterial injury, its role in remodelling remains unclear. We investigate whether Smad3, a TGF-beta signalling protein, might facilitate its effect on remodelling. METHODS AND RESULTS: Using t
he rat carotid angioplasty model, we assess Smad3 expression following arterial injury. We then test the effect of arterial Smad3 overexpression on the response to injury, and use a conditioned media experimental design to confirm an Smad3-dependent soluble factor that mediates this response. We use small interfering RNA (siRNA) to identify this factor as connective tissue growth factor (CTGF). Finally, we attempt to replicate the effect of medial Smad3 overexpression through adventitial application of recombinant CTGF. Injury induced medial expression of Smad3; overexpression of Smad3 caused neointimal thickening and luminal expansion, suggesting adaptive remodelling. Smad3 overexpression, though exclusively medial, caused adventitial changes: myofibroblast transformation, proliferation, and collagen production, all of which are associated with adaptive remodelling. Supporting the hypothesis that Smad3 initiated remodelling and these adventitial changes via a secreted product of medial smooth muscle cells (SMCs), we found that media conditioned by Smad3-expressing recombinant adenoviral vector (AdSmad3)-infected SMCs stimulated adventitial fibroblast transformation, proliferation, and collagen production in vitro. This effect was attenuated by pre-treatment of SMCs with siRNA specific for CTGF, abundantly produced by AdSmad3-infected SMCs, and significantly up-regulated in Smad3-overexpressing arteries. Moreover, periadventitial administration of CTGF replicated the effect of medial Smad3 overexpression on adaptive remodelling and neointimal hyperplasia. CONCLUSION: Medial gene transfer of Smad3 promotes adaptive remodelling by indirectly influencing the behaviour of adventitial fibroblasts. This arterial cell-cell communication is likely to be mediated by Smad3-dependent production of CTGF.
CCN family 2/connective tissue growth factor (CCN2/CTGF) promotes endochondral ossification. However, the role of CCN2 in the replacement of hypertrophic cartilage with bone is still unclear. The phenotype of Ccn2 null mice, having an expanded hypertrophic zone
, indicates that the resorption of the cartilage extracellular matrix is impaired therein. Therefore, we analyzed the role of CCN2 in osteoclastogenesis because cartilage extracellular matrix is resorbed mainly by osteoclasts during endochondral ossification. Expression of the Ccn2 gene was upregulated in mouse macrophage cell line RAW264.7 on day 6 after treatment of glutathione S transferase (GST) fusion mouse receptor activator of NF-kappaB ligand (GST-RANKL), and a combination of recombinant CCN2 (rCCN2) and GST-RANKL significantly enhanced tartrate-resistant acid phosphatase (TRACP)-positive multinucleated cell formation compared with GST-RANKL alone. Therefore, we suspected the involvement of CCN2 in cell-cell fusion during osteoclastogenesis. To clarify the mechanism, we performed real-time PCR analysis of gene expression, coimmunoprecipitation analysis, and solid-phase binding assay of CCN2 and dendritic cell-specific transmembrane protein (DC-STAMP), which is involved in cell-cell fusion. The results showed that CCN2 induced and interacted with DC-STAMP. Furthermore, GST-RANKL-induced osteoclastogenesis was impaired in fetal liver cells from Ccn2 null mice, and the impaired osteoclast formation was rescued by the addition of exogenous rCCN2 or the forced expression of DC-STAMP by a retroviral vector. These results suggest that CCN2 expressed during osteoclastogenesis promotes osteoclast formation via induction of and interaction with DC-STAMP.
Fibrosis is a major cause of end-stage renal disease, and although initiation factors have been elucidated, uncertainty concerning the downstream pathways has hampered the development of anti-fibrotic therapies. CCN2 (CTGF) functions downstream of transforming g
rowth factor (TGF)-beta, driving increased extracellular matrix (ECM) accumulation and fibrosis. We examined the possibility that CCN3 (NOV), another CCN family member with reported biological activities that differ from CCN2, might act as an endogenous negative regulator of ECM and fibrosis. We show that cultured rat mesangial cells express CCN3 mRNA and protein, and that TGF-beta treatment reduced CCN3 expression levels while increasing CCN2 and collagen type I activities. Conversely, either the addition of CCN3 or CCN3 overexpression produced a marked down-regulation of CCN2 followed by virtual blockade of both collagen type I transcription and its accumulation. This finding occurred in both growth-arrested and CCN3-transfected cells under normal growth conditions after TGF-beta treatment. These effects were not attributable to altered cellular proliferation as determined by cell cycle analysis, nor were they attributable to interference of Smad signaling as shown by analysis of phosphorylated Smad3 levels. In conclusion, both CCN2 and CCN3 appear to act in a yin/yang manner to regulate ECM metabolism. CCN3, acting downstream of TGF-beta to block CCN2 and the up-regulation of ECM, may therefore serve to naturally limit fibrosis in vivo and provide opportunities for novel, endogenous-based therapeutic treatments.
BACKGROUND: One of the main contributors to maladaptive cardiac remodeling is fibrosis. Connective tissue growth factor (CTGF), a matricellular protein that is secreted into the cardiac extracellular matrix by both cardiomyocytes and fibroblasts, is often associ
ated with development of fibrosis. However, recent studies have questioned the role of CTGF as a pro-fibrotic factor. Therefore, we aimed to investigate the effect of CTGF on cardiac fibrosis, and on functional, structural, and electrophysiological parameters in a mouse model of CTGF knockout (KO) and chronic pressure overload. METHODS AND RESULTS: A new mouse model of global conditional CTGF KO induced by tamoxifen-driven deletion of CTGF, was subjected to 16weeks of chronic pressure overload via transverse aortic constriction (TAC, control was sham surgery). CTGF KO TAC mice presented with hypertrophic hearts, and echocardiography revealed a decrease in contractility on a similar level as control TAC mice. Ex vivo epicardial mapping showed a low incidence of pacing-induced ventricular arrhythmias (2/12 in control TAC vs. 0/10 in CTGF KO TAC, n.s.) and a tendency towards recovery of the longitudinal conduction velocity of CTGF KO TAC hearts. Picrosirius Red staining on these hearts unveiled increased fibrosis at a similar level as control TAC hearts. Furthermore, genes related to fibrogenesis were also similarly upregulated in both TAC groups. Histological analysis revealed an increase in fibronectin and vimentin protein expression, a significant reduction in connexin43 (Cx43) protein expression, and no difference in NaV1.5 expression of CTGF KO ventricles as compared with sham treated animals. CONCLUSION: Conditional CTGF inhibition failed to prevent TAC-induced cardiac fibrosis and hypertrophy. Additionally, no large differences were found in other parameters between CTGF KO and control TAC mice. With no profound effect of CTGF on fibrosis formation, other factors or pathways are likely responsible for fibrosis development.
Ren Y, etal., Drug Des Devel Ther. 2015 Jul 31;9:4155-71. doi: 10.2147/DDDT.S86748. eCollection 2015.
Transforming growth factor-beta1 (TGF-beta1) plays an important role in the pathogenesis and progression of chronic kidney disease. Connective tissue growth factor (CTGF) is a critical fibrogenic mediator of TGF-beta1. Mammalian sirtuin 1 (Sirt1) is reported to
attenuate renal fibrosis by inhibiting the TGF-beta1 pathway. This study was designed to detect whether the delivery of CTGF siRNA in vivo directly ameliorates renal fibrosis. Furthermore, the relationship with Sirt1 underlying the protective effect of CTGF siRNA on interstitial fibrosis and apoptosis was explored. Here, we report that the expressions of CTGF and TGF-beta1 were increased while Sirt1 expression and activity were both dramatically decreased in mouse kidneys with unilateral ureteral obstruction. Recombinant human TGF-beta1 treatment in HK-2 cells increased CTGF levels and remarkably decreased Sirt1 levels and was accompanied by apoptosis and release of fibrosis-related factors. Recombinant human CTGF stimulation also directly induced apoptosis and fibrosis. The CTGF siRNA plasmid ameliorated tubular cell apoptosis and tubulointerstitial fibrosis, but did not affect Sirt1 expression and activity both in vivo and in vitro. Furthermore, overexpression of Sirt1 abolished TGF-beta1-induced cell apoptosis and fibrosis, while Sirt1 overexpression suppressed CTGF expression via stimulation by TGF-beta1. This study provides evidence that treatment strategies involving the delivery of siRNA targeting potentially therapeutic transgenes may be efficacious. Our results suggest that the decrease in Sirt1 is associated with the upregulated expression of CTGF in renal fibrosis, and may aid in the design of new therapies for the prevention of renal fibrosis.
Interactions among tumor cells, stromal cells, and extracellular matrix compositions are mediated through cytokines during tumor progression. Our analysis of 132 known cytokines and growth factors in published clinical breast cohorts and our 84 patient-derived xenograft models revealed that the elev
ated connective tissue growth factor (CTGF) in tumor epithelial cells significantly correlated with poor clinical prognosis and outcomes. CTGF was able to induce tumor cell epithelial-mesenchymal transition (EMT), and promote stroma deposition of collagen I fibers to stimulate tumor growth and metastasis. This process was mediated through CTGF-tumor necrosis factor receptor I (TNFR1)-IkappaB autocrine signaling. Drug treatments targeting CTGF, TNFR1, and IkappaB signaling each prohibited the EMT and tumor progression.
Upper extremity tendinopathies are associated with performance of forceful repetitive tasks. We used our rat model of repetitive strain injury to study changes induced in forelimb flexor digitorum tendons. Rats were trained to perform a high repetition high force (HRHF) handle-pulling task (12 reach
es/min at 60 +/- 5% maximum pulling force [MPF]), or a low repetition negligible force (LRNF) reaching and food retrieval task (three reaches/min at 5 +/- 5% MPF), for 2 h/day in 30 min sessions, 3 days/week for 3-12 weeks. Forelimb grip strength was tested. Flexor digitorum tendons were examined at midtendon at the level of the carpal tunnel for interleukin (IL)-1beta, neutrophil, and macrophage influx, Substance P, connective tissue growth factor (CTGF), and periostin-like factor (PLF) immunoexpression, and histopathological changes. In HRHF rats, grip strength progressively decreased, while IL-1beta levels progressively increased in the flexor digitorum peritendon (para- and epitendon combined) and endotendon with task performance. Macrophage invasion was evident in week 6 and 12 HRHF peritendon but not endotendon. Also in HRHF rats, Substance P immunoexpression increased in week 12 peritendon as did CTGF- and PLF-immunopositive fibroblasts, the increased fibroblasts contributing greatly to peritendon thickening. Endotendon collagen disorganization was evident in week 12 HRHF tendons. LRNF tendons did not differ from controls, even at 12 weeks. Thus, we observed exposure-dependent changes in flexor digitorum tendons within the carpal tunnel, including increased inflammation, nociceptor-related neuropeptide immunoexpression, and fibrotic histopathology, changes associated with grip strength decline. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Liu F, etal., Tohoku J Exp Med. 2016;238(1):49-56. doi: 10.1620/tjem.238.49.
Injury to the recurrent laryngeal nerve often leads to permanent vocal cord paralysis, which has a significant negative impact on the quality of life. Long-term denervation can induce laryngeal muscle fibrosis, which obstructs the muscle recovery after laryngeal reinnervation. However, the mechanism
s of fibrosis remain unclear. In this study, we aimed to analyze the changes in the expression of fibrosis-related factors, including transforming growth factor-beta1 (TGF-beta1), connective tissue growth factor (CTGF), and alpha-smooth muscle actin (alpha-SMA) in denervated skeletal muscles using a mouse model of accessory nerve transection. Because of the small size, we used sternocleidomastoid muscles instead of laryngeal muscles for denervation experiments. Masson's trichrome staining showed that the grade of atrophy and fibrosis of muscles became more severe with time, but showed a plateau at 4 weeks after denervation, followed by a slow decrease. Quantitative assessment and immunohistochemistry showed that TGF-beta1 expression peaked at 1 week after denervation (p < 0.05) and was maintained at its high level until 4 weeks. CTGF- and alpha-SMA-positive muscle cells were detected at 1 week after denervation, peaked at 2 weeks (p < 0.05), and remained at high levels with a subsequent slight decrease for 3-4 weeks. These results suggest that TGF-beta1 and CTGF may be involved in the process of denervated skeletal muscle fibrosis. They may induce the differentiation of myoblasts into myofibroblasts, as characterized by the activation of alpha-SMA. These findings may provide insights on key pathological processes in denervated skeletal muscle fibrosis and develop novel therapeutic strategies.
BACKGROUND: The aim of the present study was to evaluate the role of extracellular matrix-associated glycosaminoglycans (GAGs), connective tissue growth factor (CTGF), angiogenic vascular endothelial growth factor (VEGF) and inflammatory factors (MCP-1, CD40, IF
N-gamma) in the development of diabetic nephropathy in type 1 diabetes (T1DM). METHODS: Plasma and urine samples from 30 T1DM patients and 20 healthy controls were used to measure the levels of CTGF, VEGF, MCP-1, CD40 and IFN-gamma by ELISA. Plasma and urine GAGs were measured using a spectrophotometric method. RESULTS: Plasma levels of GAGs, CD40 and MCP-1 and urine levels of GAGs and CTGF were significantly elevated in normoalbuminuric T1DM patients. A tendency to higher plasma VEGF levels was found in patients compared to controls. The urine/plasma GAGs ratio of T1DM patients was almost similar to that of healthy subjects (HS), whereas the urine/plasma CTGF ratio was about three times greater in diabetic patients compared to HS. CONCLUSIONS: Conclusively, increased GAGs and CTGF excretion are evident in T1DM normoalbuminuric juveniles, possibly reflecting early renal injury signs, before the initiation of albuminuria.
Li X, etal., Nephron Exp Nephrol. 2009;111(2):e31-41. Epub 2009 Jan 13.
BACKGROUND: Diabetic nephropathy (DN) is the most common cause of end-stage renal failure. Grape seed proanthocyanidin extracts (GSPE) are powerful antioxidants. However, the role of GSPE on advanced glycation end products (AGEs), receptor for advanced glycation end products (RAGE) and expression of
connective tissue growth factor (CTGF) in DN has not been elucidated. Using streptozotocin-induced diabetic rats, we evaluated the effects of GSPE in DN. METHODS: Wistar rats were induced into diabetes using streptozotocin injections and diabetic rats were treated with GSPE (dosage: 500 mg x kg(-1) x day(-1)) for 24 weeks. The renal pathological changes were examined with PAS staining and electron microscope. The mRNA and protein expression of RAGE and CTGF in kidney were detected by RT-PCR, Western blot and immunohistochemical staining. RESULTS: Treated animals showed reduction in serum AGEs (p < 0.01), proteinuria (p < 0.01) and systolic blood pressure (p < 0.01). GSPE reduced the expression of RAGE (p < 0.01) and CTGF (p < 0.01) in the kidney, which were contributing to reversal of extracellular matrix accumulation in DN. CONCLUSION: Our results suggest that GSPE hold substantial promise for the treatment of DN. GSPE can decrease proteinuria, attenuating the progression of nephropathy in diabetic rats. Renoprotective effects of GSPE are correlated with suppression on AGEs/RAGE axis, downregulating expression of CTGF.
Chang HM, etal., Mol Cell Endocrinol. 2016 Feb 15;422:9-17. doi: 10.1016/j.mce.2015.11.009. Epub 2015 Nov 11.
Connective tissue growth factor (CTGF) is a matricellular protein that plays a critical role in the development of ovarian follicles. Growth differentiation factor 8 (GDF8) is mainly, but not exclusively, expressed in the mammalian musculoskeletal system and is
a potent negative regulator of skeletal muscle growth. The aim of this study was to investigate the effects of GDF8 and CTGF on the regulation of cell proliferation in human granulosa cells and to examine its underlying molecular determinants. Using dual inhibition approaches (inhibitors and small interfering RNAs), we have demonstrated that GDF8 induces the up-regulation of CTGF expression through the activin receptor-like kinase (ALK)4/5-mediated SMAD2/3-dependent signaling pathways. In addition, the increase in CTGF expression contributes to the GDF8-induced suppressive effect on granulosa cell proliferation. Our findings suggest that GDF8 and CTGF may play critical roles in the regulation of proliferative events in human granulosa cells.
McClain JA, etal., Neurosci Lett. 2009 Aug 21;460(1):27-31. Epub 2009 May 20.
Accumulating evidence indicates that neuroinflammation contributes significantly to progressive dopaminergic (DA) neurodegeneration in Parkinson's disease (PD). Altered matrix metalloproteinase-3 (MMP-3) expression has been reported in several neuroinflammatory paradigms; however, its relationship t
o inflammation-induced DA neurotoxicity has not been explored. To this end, we investigated the temporal expression pattern of MMP-3 and one of its downstream targets, connective tissue growth factor (CTGF), following lipopolysaccharide (LPS)-induced DA neurodegeneration. LPS was directly injected into the substantia nigra of male Sprague-Dawley rats. Lesion formation was confirmed with immunohistochemistry 48 h post-injection. MMP-3 and CTGF were measured by western blot 12, 24, and 48 h post-injection. In association with neurodegeneration, MMP-3 expression and activation was significantly increased 24 and 48 h after LPS injection. In addition, CTGF expression increased 5-fold at the 24h time point. The temporal changes in MMP-3 and CTGF expression corresponded to the neurodegenerative phase of this model, suggesting that these two proteins may participate in neuroinflammation-induced DA neurotoxicity.
F-ILK signaling induces epithelial to mesenchymal transition (EMT) in AT II cells is unknown. METHODS: Transgenic mice with targeted overexpression of CTGF in AT II cells were generated utilizing the surfactant protein C (SP-C) gene promoter and doxycycline-inducible system. AT II cells were isolated from 4-wk-old CTGF-overexpressing (CTGF+) mice and control littermates, and cultured on Matrigel. Cells were transfected with ILK siRNA, and cell morphology and expression of cell differentiation markers were analyzed. RESULTS: The AT II cells from the control lungs grew in clusters and formed alveolar-like cysts and expressed SP-C. In contrast, the cells from CTGF+ lungs were spread and failed to form alveolar-like cysts. These cells expressed higher levels of CTGF, alpha smooth muscle actin (alpha-SMA), fibronectin and vimentin, the mesenchymal markers, suggesting EMT-like changes. Transfection with ILK siRNA not only dramatically attenuated ILK expression, but also decreased alpha-SMA expression as well as reversed cell morphological changes in CTGF+ AT II cells. CONCLUSION: Overexpression of CTGF induces EMT in mouse primary AT II cells and this is mediated by ILK.
Touvron M, etal., Dis Model Mech. 2012 Jul;5(4):481-91. doi: 10.1242/dmm.009456. Epub 2012 Apr 5.
Cardiac fibrosis is critically involved in the adverse remodeling accompanying dilated cardiomyopathies (DCMs), which leads to cardiac dysfunction and heart failure (HF). Connective tissue growth factor (CTGF), a profibrotic cytokine, plays a key role in this de
leterious process. Some beneficial effects of IGF1 on cardiomyopathy have been described, but its potential role in improving DCM is less well characterized. We investigated the consequences of expressing a cardiac-specific transgene encoding locally acting IGF1 propeptide (muscle-produced IGF1; mIGF1) on disease progression in a mouse model of DCM [cardiac-specific and inducible serum response factor (SRF) gene disruption] that mimics some forms of human DCM. Cardiac-specific mIGF1 expression substantially extended the lifespan of SRF mutant mice, markedly improved cardiac functions, and delayed both DCM and HF. These protective effects were accompanied by an overall improvement in cardiomyocyte architecture and a massive reduction of myocardial fibrosis with a concomitant amelioration of inflammation. At least some of the beneficial effects of mIGF1 transgene expression were due to mIGF1 counteracting the strong increase in CTGF expression within cardiomyocytes caused by SRF deficiency, resulting in the blockade of fibroblast proliferation and related myocardial fibrosis. These findings demonstrate that SRF plays a key role in the modulation of cardiac fibrosis through repression of cardiomyocyte CTGF expression in a paracrine fashion. They also explain how impaired SRF function observed in human HF promotes fibrosis and adverse cardiac remodeling. Locally acting mIGF1 efficiently protects the myocardium from these adverse processes, and might thus represent a therapeutic avenue to counter DCM.
Koga K, etal., Diabetologia. 2015 Sep;58(9):2169-80. doi: 10.1007/s00125-015-3642-4. Epub 2015 Jun 11.
AIMS/HYPOTHESIS: The accumulation of extracellular matrix (ECM) is a characteristic of diabetic nephropathy, and is partially caused by profibrotic proteins TGF-beta and connective tissue growth factor (CTGF). We aimed to identify microRNAs (miRNAs) targeting ... (more)
pan style='font-weight:700;'>CTGF on podocytes in diabetic nephropathy. METHODS: We investigated miRNAs targeting CTGF on podocytes with miRNA array analysis and identified a candidate miRNA, miR-26a. Using overexpression and silencing of miR-26a in cultured podocytes, we examined changes of ECM and its host genes. We further investigated glomerular miR-26a expression in humans and in mouse models of diabetic nephropathy. RESULTS: miR-26a, which was downregulated by TGF-beta1, was expressed in glomerular cells including podocytes and in tubules by in situ hybridisation. Glomerular miR-26a expression was downregulated by 70% in streptozotocin-induced diabetic mice. Transfection of miR-26a mimics in cultured human podocytes decreased the CTGF protein level by 50%, and directly inhibited CTGF expression in podocytes, as demonstrated by a reporter assay with the 3'-untranslated region of the CTGF gene. This effect was abolished by a mutant plasmid. miR-26a mimics also inhibited TGF-beta1-induced collagen expression, SMAD-binding activity and expression of its host genes CTDSP2 and CTDSPL. Knockdown of CTDSP2 and CTDSPL increased collagen expression in TGF-beta-stimulated podocytes, suggesting that host genes also regulate TGF-beta/SMAD signalling. Finally, we observed a positive correlation between microdissected glomerular miR-26a expression levels and estimated GFR in patients with diabetic nephropathy. CONCLUSIONS/INTERPRETATION: The downregulation of miR-26a is involved in the progression of diabetic nephropathy both in humans and in mice through enhanced TGF-beta/CTGF signalling.
Li C, etal., Nat Commun. 2016 Apr 29;7:11455. doi: 10.1038/ncomms11455.
Mesenchymal stem cells (MSCs) participate in the repair/remodelling of many tissues, where MSCs commit to different lineages dependent on the cues in the local microenvironment. Here we show that TGFbeta-activated RhoA/ROCK signalling functions as a molecular switch regarding the fate of MSCs in ar
terial repair/remodelling after injury. MSCs differentiate into myofibroblasts when RhoA/ROCK is turned on, endothelial cells when turned off. The former is pathophysiologic resulting in intimal hyperplasia, whereas the latter is physiological leading to endothelial repair. Further analysis revealed that MSC RhoA activation promotes formation of an extracellular matrix (ECM) complex consisting of connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF). Inactivation of RhoA/ROCK in MSCs induces matrix metalloproteinase-3-mediated CTGF cleavage, resulting in VEGF release and MSC endothelial differentiation. Our findings uncover a novel mechanism by which cell-ECM interactions determine stem cell lineage specificity and offer additional molecular targets to manipulate MSC-involved tissue repair/regeneration.
Wang M, etal., Oncotarget. 2015 Apr 20;6(11):9517-30.
Neuroblastoma is a common childhood malignant tumor originated from the neural crest-derived sympathetic nervous system. A crucial event in the pathogenesis of neuroblastoma is to promote proliferation of neuroblasts, which is closely related to poor survival. However, mechanisms for regulation of
cell proliferation and tumorigenicity in neuroblastoma are not well understood. Here, we report that overexpression of TAZ in neuroblastoma BE(2)-C cells causes increases in cell proliferation, self renewal and colony formation, which was restored back to its original levels by knockdown of TAZ in TAZ-overexpression cells. Inhibition of endogenous TAZ attenuated cell proliferation, colony formation and tumor development in neuroblastoma SK-N-AS cell, which could be rescued by re-introduction of TAZ into TAZ-knockdown cells. In addition, we found that overexpressing TAZ-mediated induction of CTGF and PDGF-beta expression, cell proliferation and colony formation were inhibited by knocking down CTGF and PDGF-beta with siRNA in TAZ-overexpressing cell. Overall, our findings suggested that TAZ plays an essential role in regulating cell proliferation and tumorigenesis in neuroblastoma cells. Thus, TAZ seems to be a novel and promising target for the treatment of neuroblastoma.
Lamarca A, etal., Curr Cancer Drug Targets. 2015;15(5):435-44.
BACKGROUND: Hepatocellular carcinoma (HCC) tends to develop in the liver when there is a high level of background inflammation (cirrhosis). Treatment options are limited and mainly based on systemic therapies such as anti-angiogenic drugs (e.g. sorafenib). Connective tissue growth factor (CTGF
le='font-weight:700;'>CTGF) is a matricellular protein involved in inflammation, tumour growth and angiogenesis. The aim of this study is to determine the expression of CTGF and hypoxia inducible factors (HIF) in HCC and to clarify its impact on relapse and survival. MATERIAL AND METHODS: Eligibility criteria for the study consisted of patients with a diagnosis of HCC, formalin-fixed and paraffin-embedded (FFPE) biopsy tissue, as well as relapse and available survival data. A tissue microarray was constructed from >/= 70% tumoural sections. The expressions of CTGF, HIF1alpha and HIF2alpha were analysed by immunohistochemistry. The relationship between expression of CTGF/HIF1alpha and CTGF/HIF2alpha were analysed. Univariate and multivariate analyses were performed. RESULTS: Fifty-three patients were screened; 39 patients were eligible for this study. Patients were treated with radical intent. At the end of follow up, 59% patients relapsed (28.2% locally, 10.3% multicentric liver relapse and 7.7% distant metastases). Estimated median disease-free survival (DFS) and overall survival (OS) were 23.4 (95%CI 7.18-39.66) and 38.6 months (95%CI 30.7-46.6), respectively. Expression of CTGF was: negative 23.1%, focal 48.7% and diffuse 23.1%. A non-statistically significant relationship between expression of CTGF and HIF was shown supporting an alternative pathway for CTGF expression in HCC. In multivariate analysis CTGF expression was an independent factor related to OS, with shorter survival in those patients with focal/diffuse CTGF expression (HR 2.46; 95%CI 1.18-5.15). CONCLUSIONS: Our results support that expression of CTGF is an independent factor associated with shorter OS in HCC. Further analysis of CTGF expression in a larger series of HCC patients is required to confirm CTGF as a prognostic biomarker in HCC.