Coenen MJ, etal., Ann Neurol. 2004 Oct;56(4):560-4. doi: 10.1002/ana.20229.
We report a cytochrome c oxidase (COX)-deficient patient, clinically affected with Leigh-like disease, with a homozygous mutation in the COX10 start codon. Two-dimensional gel electrophoresis showed a decrease of fully assembled COX without the accumulation of p
artially assembled COX subcomplexes. Western blot analysis with antibodies directed to COX subunits I, II, and IV showed a decrease of these subunits in this patient compared with control. Overexpression of the COX10 protein in the patient's fibroblasts proved that the detected mutation was indeed the disease cause.
Valnot I, etal., Hum Mol Genet. 2000 May 1;9(8):1245-9. doi: 10.1093/hmg/9.8.1245.
Cytochrome c oxidase (COX) defects are found in a clinically and genetically heterogeneous group of mitochondrial disorders. To date, mutations in only two nuclear genes causing COX deficiency have been described. We report here a genetic linkage study of a consanguineous family with an isolated COX
defect and subsequent identification of a mutation in a third nuclear gene causing a deficiency of the enzyme. A genome-wide search for homozygosity allowed us to map the disease gene to chromosome 17p13.1-q11.1 (Z (max)= 2.46; theta = 0.00 at the locus D17S799). This region encompasses two genes, SCO1 and COX10, encoding proteins involved in COX assembly. Mutation analysis followed by a complementation study in yeast permitted us to ascribe the COX deficiency to a homozygous missense mutation in the COX10 gene. This gene encodes heme A:farnesyltransferase, which catalyzes the first step in the conversion of protoheme to the heme A prosthetic groups of the enzyme. All three nuclear genes now linked to isolated COX deficiency are involved in the maturation and assembly of COX, emphasizing the major role of such genes in COX pathology.
Antonicka H, etal., Hum Mol Genet. 2003 Oct 15;12(20):2693-702. doi: 10.1093/hmg/ddg284. Epub 2003 Aug 19.
Deficiencies in the activity of cytochrome c oxidase (COX) are an important cause of autosomal recessive respiratory chain disorders. Patients with isolated COX deficiency are clinically and genetically heterogeneous, and mutations in several different assembly factors have been found to cause speci
fic clinical phenotypes. Two of the most common clinical presentations, Leigh Syndrome and hypertrophic cardiomyopathy, have so far only been associated with mutations in SURF1 or SCO2 and COX15, respectively. Here we show that expression of COX10 from a retroviral vector complements the COX deficiency in a patient with anemia and Leigh Syndrome, and in a patient with anemia, sensorineural deafness and fatal infantile hypertrophic cardiomyopathy. A partial rescue was also obtained following microcell-mediated transfer of mouse chromosomes into patient fibroblasts. COX10 functions in the first step of the mitochondrial heme A biosynthetic pathway, catalyzing the conversion of protoheme (heme B) to heme O via the farnesylation of a vinyl group at position C2. Heme A content was reduced in mitochondria from patient muscle and fibroblasts in proportion to the reduction in COX enzyme activity and the amount of fully assembled enzyme. Mutation analysis of COX10 identified four different missense alleles, predicting amino acid substitutions at evolutionarily conserved residues. A topological model places these residues in regions of the protein shown to have important catalytic functions by mutation analysis of a prokaryotic ortholog. Mutations in COX10 have previously been reported in a single family with tubulopathy and leukodystrophy. This study shows that mutations in this gene can cause nearly the full range of clinical phenotypes associated with early onset isolated COX deficiency.