We describe a new Type II congenital disorder of glycosylation (CDG-II) caused by mutations in the conserved oligomeric Golgi (COG) complex gene, COG8. The patient has severe psychomotor retardation, seizures, failure to thrive and intolerance to wheat and dairy
products. Analysis of serum transferrin and total serum N-glycans showed normal addition of one sialic acid, but severe deficiency in subsequent sialylation of mostly normal N-glycans. Patient fibroblasts were deficient in sialylation of both N- and O-glycans, and also showed slower brefeldin A (BFA)-induced disruption of the Golgi matrix, reminiscent of COG7-deficient cells. Patient fibroblasts completely lacked COG8 protein and had reduced levels and/or mislocalization of several other COG proteins. The patient had two COG8 mutations which severely truncated the protein and destabilized the COG complex. The first, IVS3 + 1G > A, altered the conserved splicing site of intron 3, and the second deleted two nucleotides (1687-1688 del TT) in exon 5, truncating the last 47 amino acids. Lentiviral-mediated complementation with normal COG8 corrected mislocalization of other COG proteins, normalized sialylation and restored normal BFA-induced Golgi disruption. We propose to call this new disorder CDG-IIh or CDG-II/COG8.
The hetero-octameric conserved oligomeric Golgi (COG) complex is essential for the structure/function of the Golgi apparatus through regulation of membrane trafficking. Here, we describe a patient with a mild form of a congenital disorder of glycosylation type II (CDG-II), which is caused by a homoz
ygous nonsense mutation in the hCOG8 gene. This leads to a premature stop codon resulting in a truncated Cog8 subunit lacking the 76 C-terminal amino acids. Mass spectrometric analysis of the N- and O-glycan structures identified a mild sialylation deficiency. We showed that the molecular basis of this defect in N- and O-glycosylation is caused by the disruption of the Cog1-Cog8 interaction due to truncation. As a result, Cog1 deficiency accompanies the Cog8 deficiency, preventing assembly of the intact, stable complex and resulting in the appearance of smaller subcomplexes. Moreover, levels of beta1,4-galactosytransferase were significantly reduced. The defects in O-glycosylation could be fully restored by transfecting the patient's fibroblasts with full-length Cog8. The Cog8 defect described here represents a novel type of CDG-II, which we propose to name as CDG-IIh or CDG caused by Cog8 deficiency (CDG-II/Cog8).
Yang A, etal., Clin Chim Acta. 2017 Aug;471:191-195. doi: 10.1016/j.cca.2017.06.010. Epub 2017 Jun 13.
Congenital disorders of glycosylation (CDG) are a rapidly expanding group of inherited metabolic disorders with highly variable clinical presentations caused by deficient glycosylation of proteins and/or lipids. CDG-IIh is a very rare subgroup of CDG caused by mutations in the conserved oligomeric G
olgi (COG) complex gene, COG8, and so far, only two cases have been reported in the medical literature. Here, we describe an 8-year-old Korean boy with psychomotor retardation, hypotonia, failure to thrive, elevated serum liver enzymes, microcephaly, and talipes equinovarus. A liver biopsy of the patient showed only interface hepatitis with mild lobular activity, and brain magnetic resonance imaging revealed cerebellar atrophy. Compared with the previous two reported cases, our patient showed relatively mild psychomotor retardation without a seizure history. The transferrin isoelectric focusing profiles in the patient showed a CDG type II pattern with increased disialo- and trisialo-transferrin. Targeted exome sequencing was performed to screen all CDG type II-related genes, and two novel frameshift mutations were found: c.171dupG (p.Leu58Alafs*29) and c.1656dupC (p.Ala553Argfs*15) in COG8. The parents were heterozygous carriers of each variant. CDG should be included in the initial differential diagnosis for children with a suspected unknown syndrome or unclassified inherited metabolic disorder or children with diverse clinical presentations, such as psychomotor retardation, hypotonia, skeletal deformity, microcephaly, cerebellar atrophy, and unexplained transient elevated liver enzyme.
Arora V, etal., Am J Med Genet A. 2019 Mar;179(3):480-485. doi: 10.1002/ajmg.a.61030. Epub 2019 Jan 28.
Congenital disorders of glycosylation (CDG) are an extremely rapidly growing and phenotypically versatile group of disorders. Conserved oligomeric Golgi (COG) complexes are hetero-octameric proteins involved in retrograde trafficking within the Golgi. Seven of its eight subunits have a causal role i
n CDG. To date, only three cases of COG8-CDG have been published but none in the antenatal period. We present the first case of antenatally diagnosed COG8-CDG with facial dysmorphism and additional features such as Dandy-Walker malformation and arthrogryposis multiplex congenita, thus expanding the phenotype of this rare disorder. Trio whole exome sequencing revealed a novel homozygous variant in COG8, which creates a new splice site in exon 5 and protein truncation after 12 amino acids downstream to the newly generated splice site. As the mutations of the previous three patients were also identified in exon 5, it is likely to be a potential mutational hotspot in COG8. An association between antenatally increased nuchal translucency and COG8-CDG is also established, which would alert clinicians to its diagnosis early in gestation. It remains to be seen if this observation can be extended to other COG-CDGs.