Winter E and Ponting CP, Trends Biochem Sci. 2002 Aug;27(8):381-3.
A family of membrane-associated proteins related to yeast Lag1p and mammalian TRAM has been identified. The family includes the protein product of CLN8, a gene mutated in progressive epilepsy with mental retardation. Mouse CLN8
an> is also mutated in the mnd/mnd mouse, a model for neuronal ceroid lipofuscinoses. The identification of these homologues has potential implications for our understanding of ceramide synthesis, lipid regulation and protein translocation in the endoplasmic reticulum.
Haddad SE, etal., Electrophoresis. 2012 Dec;33(24):3798-809. doi: 10.1002/elps.201200472.
Four patients with juvenile neuronal ceroid lipofuscinoses, a childhood neurodegenerative disorder that was previously described as CLN9 variant, are reclassified as CLN5 disease. CLN5-deficient (CLN5(-/-) ) fibroblasts demonstrate adhesion defects, increased growth, apoptosis, and decreased levels
of ceramide, sphingomyelin, and glycosphingolipids. The CLN8 protein (CLN8p) corrects growth and apoptosis in CLN5(-/-) cells. Related proteins containing a Lag1 motif (CerS1/2/4/5/6) partially corrected these deficits, with CerS1, which is primarily expressed in brain, providing the best complementation, suggesting CLN5p activates CerS1 and may co-immunoprecipitate with it. CLN8p complements CLN5-deficient cells, consolidating the interrelationship of CLN5p/CLN8p, whose potential roles are explored as activators of (dihydro)ceramide synthases. Homozygosity mapping using microarray technology led to identification of CLN5 as the culprit gene in previously classified CLN9-defective cases. Similar to CLN5(-/-) cells, ceramide synthase activity, C16/C18:0/C24:0/C24:1 ceramide species, measured by MS is decreased in CLN8(-/-) cells. Comparison of normal versus CLN5(-/-) cell CerS1-bound proteins by immunoprecipitation, differential gel electrophoresis, and MS revealed absence of gamma-actin in CLN5(-/-) cells. The gamma-actin gene sequence is normal in CLN5(-/-) derived DNA. The gamma-actin-bound proteins, vimentin and histones H2Afz/H3F3A/Hist1H4, were absent from the gamma-actin protein complex in CLN5(-/-) cells. The function of CLN5p may require vimentin and the histone proteins to bind gamma-actin. Defective binding could explain the CLN5(-/-) cellular phenotype. We explore the role of the CLN5/CLN8 proteins in ceramide species specific sphingolipid de novo synthesis, and suggest that CLN5/CLN8 proteins are more closely related than previously believed.
Galizzi G, etal., Neurosci Lett. 2011 Jan 25;488(3):258-62. Epub 2010 Nov 19.
Neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by epilepsy, progressive motor and cognitive decline, blindness, and by the accumulation of autofluorescent lipopigment. Late-infantile onset forms (LINCL) include those linked to mutations in ... (more)
pan style='font-weight:700;'>CLN8 gene, encoding a transmembrane protein at the endoplasmic reticulum (ER). In the motor neuron degeneration (mnd) mouse model of the CLN8-LINCL (CLN8(mnd)), we carried out an analysis of ER stress-related molecules in CNS structures that exhibit a variable rate of disease progression (early retinal degeneration and delayed brain and motoneuron dysfunction). At the presymptomatic state of 1-month-old CLN8(mnd) mice, we found an upregulation of GRP78 and activation of the transcription factor-6 (ATF6) in all structures examined, an activation of a CHOP-dependent pathway in the cerebellum, hippocampus and retina, a caspase-12-dependent pathway in the retina and no activation of these two pathways in the cerebral cortex and spinal cord. An increased CHOP expression was detected in the cortex and spinal cord at the early symptomatic state (4 months). Caspase-3 cleavage occurred presymptomatically in the cerebellum, hippocampus and retina, and symptomatically in the cerebral cortex and spinal cord. We also monitored activation of NF-kappaB, which is engaged in the alarming phase of ER stress, together with increased levels of TRAF2, TNF-alpha and TNFR1, and no activation of ASK-1/JNK signalling pathway, all over mnd structures. The results suggest that early ER-stress responses distinctly combined and ER-stress pathways integrated with inflammatory responses may contribute to the progression of the CLN8(mnd) disease in CNS structures.
Lonka L, etal., J Neurosci Res 2004 Jun 15;76(6):862-71.
Neuronal ceroid lipofuscinoses (NCLs) are a group of childhood-onset neurodegenerative disorders characterized by accumulation of autofluorescent lipopigment in many tissues, especially in neurons. Mutations in the CLN8 gene underlie Northern epilepsy (progressi
ve epilepsy with mental retardation [EPMR], OMIM 600143) and a subset of Turkish variant late infantile NCL, but the pathogenetic mechanisms have remained elusive. The CLN8 transmembrane protein is an endoplasmic reticulum (ER) resident protein that recycles between ER and ER-Golgi intermediate compartment (ERGIC) in non-neuronal cells. To explore the disease mechanisms, we have characterized the neuronal localization of wild-type CLN8 protein as well as CLN8 proteins representing patient mutations. Semliki Forest virus-mediated CLN8 protein localized in the ER of mouse hippocampal primary neurons when compared to subcellular markers by immunofluorescence analysis. We also analyzed the possible polarized targeting of CLN8 and observed basolateral targeting in polarized epithelial CaCo-2 cells, suggesting that CLN8 may locate outside the ER or in a specialized subcompartment of the ER. We were not able, however, to demonstrate differential distribution of CLN8 between axons and dendrites of neurons. Fractionation of mouse brain tissue indicated that endogenous mouse Cln8 is observed in light membrane fractions, different from ER, which further suggested differential localization for CLN8 in polarized cells. The disease mutations did not affect intracellular localization of CLN8 in non-neuronal or neuronal cells. Consequently, there is no obvious genotype-phenotype correlation at the level of protein localization and thus mutations most likely directly affect functionally important domains of CLN8.
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited lysosomal storage diseases and the prototype of childhood onset neurodegenerative disorders. To date, 10 NCL entities (CLN1-CLN10) are known and characterized by accumulation of autofluorescent storage material, age of onset and clin
ical symptoms. CLN8 was first identified as the causative gene for a late-onset form with progressive epilepsy and mental retardation in Finnish patients. In addition, CLN8 phenotypes were described in Turkish, Israeli and Italian patients with a more rapid progression of visual loss, epilepsy, ataxia and mental decline. Here, we report the first mutations in German (c.611G>T) and Pakistani (c.709G>A) patients. Our findings confirm previous assumptions that the CLN8 variant can occur in many ethnic groups. So far, large CLN gene deletions are only known for the CLN3 gene. Here, we also describe a novel, large CLN8 gene deletion c.544-2566_590del2613 in a Turkish family with a slightly more severe phenotype. Our data indicate that patients with clinical signs of late infantile NCL and characteristic ultrastructural inclusions should also be screened for CLN8 mutations independent of their ethnic origin.
Inoue E, etal., PLoS One. 2015 Dec 14;10(12):e0144624. doi: 10.1371/journal.pone.0144624. eCollection 2015.
Rare variations contribute substantially to autism spectrum disorder (ASD) liability. We recently performed whole-exome sequencing in two families with affected siblings and then carried out a follow-up study and identified ceroid-lipofuscinosis neuronal 8 (epilepsy, progressive with mental retardat
ion) (CLN8) as a potential genetic risk factor for ASD. To further investigate the role of CLN8 in the genetic etiology of ASD, we performed resequencing and association analysis of CLN8 with ASD in a Japanese population. Resequencing the CLN8 coding region in 256 ASD patients identified five rare missense variations: g.1719291G>A (R24H), rs201670636 (F39L), rs116605307 (R97H), rs143701028 (T108M) and rs138581191 (N152S). These variations were genotyped in 568 patients (including the resequenced 256 patients) and 1017 controls. However, no significant association between these variations and ASD was identified. This study does not support a contribution of rare missense CLN8 variations to ASD susceptibility in the Japanese population.
Progressive epilepsy with mental retardation (EPMR) is a new member of the neuronal ceroid lipofuscinoses (NCLs). The CLN8 gene underlying EPMR was recently identified. It encodes a novel 286 amino acid transmembrane protein that contains an endoplasmic reticulu
m (ER)-retrieval signal (KKRP) in its C-terminus. A homozygous mutation in the orthologous mouse gene (Cln8) underlies the phenotype of a naturally occurring NCL model, the motor neuron degeneration mouse (mnd). To characterize the product of the CLN8 gene and to determine its intracellular localization, we expressed CLN8 cDNA in BHK, HeLa and CHO cell lines. In western blotting and pulse-chase analyses an approximately 33 kDa protein that does not undergo proteolytic processing steps was detected. Using CLN8 and cell organelle specific antibodies with confocal immunofluorescence microscopy the CLN8 protein was shown to localize in the ER. Partial localization to the ER-Golgi intermediate compartment (ERGIC) was also observed. The ER-ERGIC localization was not altered in the CLN8 protein representing the EPMR mutation. However, mnd mutant protein was only found in the ER. Mutations in the ER retrieval signal KKRP resulted in localization of CLN8 to the Golgi apparatus. Taken together, these data strongly suggest that CLN8 is an ER resident protein that recycles between ER and ERGIC.