Li Z, etal., Transl Oncol. 2012 Dec;5(6):448-52. doi: 10.1593/tlo.12304. Epub 2012 Dec 1.
AIM: To explore the potential association between single-nucleotide polymorphisms (SNPs) and haplotypes of the CHRNA5-CHRNA3-CHRNB4 gene cluster and the non-small cell lung cancer (NSCLC) susceptibility in never-smoking Chinese. METHODS: A c
ase-control study was conducted with 200 NSCLC patients and 200 healthy controls, matched on age and sex. Five SNPs distributed in CHRNA5-CHRNA3-CHRNB4 gene cluster were selected for genotyping. The association between genotype and lung cancer risk was evaluated by computing the odds ratio (OR) and 95% confidence interval (CI) from multivariate unconditional logistic regression analyses with adjustment for gender and age. RESULTS: For CHRNA3 rs578776 status, data were available in 199 NSCLC patients and 199 controls. The G/G homozygote in CHRNB4 rs7178270 had a reduced risk of developing NSCLC (OR = 0.553; 95% CI = 0.309-0.989; P = .0437), especially squamous cell carcinoma (SQC) (OR = 0.344; 95% CI = 0.161-0.732; P = .0043), compared with those who carry at least one C allele (C/C and C/G). The polymorphisms of rs578776, rs938682, rs17486278, and rs11637635 were not significantly different between controls and cases or between controls and histologic subgroups, adenocarcinoma and SQC, respectively. CONCLUSIONS: In our study, we found that the SNP of CHRNB4 rs7178270 is significantly associated with reduced risk of NSCLC, especially with reduced risk of SQC in never-smoking Chinese population.
Haller G, etal., Hum Mol Genet. 2012 Feb 1;21(3):647-55. doi: 10.1093/hmg/ddr498. Epub 2011 Oct 31.
Genome-wide association studies have identified common variation in the CHRNA5-CHRNA3-CHRNB4 and CHRNA6-CHRNB3 gene clusters that contribute to nicotine dependence. However, the role of rare variation in risk for nicotine dependence in these nicotinic receptor g
enes has not been studied. We undertook pooled sequencing of the coding regions and flanking sequence of the CHRNA5, CHRNA3, CHRNB4, CHRNA6 and CHRNB3 genes in African American and European American nicotine-dependent smokers and smokers without symptoms of dependence. Carrier status of individuals harboring rare missense variants at conserved sites in each of these genes was then compared in cases and controls to test for an association with nicotine dependence. Missense variants at conserved residues in CHRNB4 are associated with lower risk for nicotine dependence in African Americans and European Americans (AA P = 0.0025, odds-ratio (OR) = 0.31, 95% confidence-interval (CI) = 0.31-0.72; EA P = 0.023, OR = 0.69, 95% CI = 0.50-0.95). Furthermore, these individuals were found to smoke fewer cigarettes per day than non-carriers (AA P = 6.6 × 10(-5), EA P = 0.021). Given the possibility of stochastic differences in rare allele frequencies between groups replication of this association is necessary to confirm these findings. The functional effects of the two CHRNB4 variants contributing most to this association (T375I and T91I) and a missense variant in CHRNA3 (R37H) in strong linkage disequilibrium with T91I were examined in vitro. The minor allele of each polymorphism increased cellular response to nicotine (T375I P = 0.01, T91I P = 0.02, R37H P = 0.003), but the largest effect on in vitro receptor activity was seen in the presence of both CHRNB4 T91I and CHRNA3 R37H (P = 2 × 10(-6)).
Zhang Y, etal., PLoS One. 2016 Mar 4;11(3):e0149946. doi: 10.1371/journal.pone.0149946. eCollection 2016.
INTRODUCTION: Recently, genome-wide association studies (GWAS) in Caucasian populations have identified an association between single nucleotide polymorphisms (SNPs) in the CHRNA5-A3-B4 nicotinic acetylcholine receptor subunit gene cluster on chromosome 15q25, lung cancer risk and smoking behaviors.
However, these SNPs are rare in Asians, and there is currently no consensus on whether SNPs in CHRNA5-A3-B4 have a direct or indirect carcinogenic effect through smoking behaviors on lung cancer risk. Though some studies confirmed rs6495308 polymorphisms to be associated with smoking behaviors and lung cancer, no research was conducted in China. Using a case-control study, we decided to investigate the associations between CHRNA3 rs6495308, CHRNB4 rs11072768, smoking behaviors and lung cancer risk, as well as explore whether the two SNPs have a direct or indirect carcinogenic effect on lung cancer. METHODS: A total of 1025 males were interviewed using a structured questionnaire (204 male lung cancer patients and 821 healthy men) to acquire socio-demographic status and smoking behaviors. Venous blood samples were collected to measure rs6495308 and rs11072768 gene polymorphisms. All subjects were divided into 3 groups: non-smokers, light smokers (1-15 cigarettes per day) and heavy smokers (>15 cigarettes per day). RESULTS: Compared to wild genotype, rs6495308 and rs11072768 variant genotypes reported smoking more cigarettes per day and a higher pack-years of smoking (P<0.05). More importantly, among smokers, both rs6495308 CT/TT and rs11072768 GT/GG had a higher risk of lung cancer compared to wild genotype without adjusting for potential confounding factors (OR = 1.36, 95%CI = 1.09-1.95; OR = 1.11, 95%CI = 1.07-1.58 respectively). Furthermore, heavy smokers with rs6495308 or rs11072768 variant genotypes have a positive interactive effect on lung cancer after adjustment for potential confounding factors (OR = 1.13, 95%CI = 1.01-3.09; OR = 1.09, 95%CI = 1.01-3.41 respectively). However, No significant associations were found between lung cancer risk and both rs6495308 and rs11072768 genotypes among non-smokers and smokers after adjusting for age, occupation, and education. CONCLUSION: This study confirmed both rs6495308 and rs11072768 gene polymorphisms association with smoking behaviors and had an indirect link between gene polymorphisms and lung cancer risk.
OBJECTIVES: Lung cancer is the leading cause of cancer-related deaths and is currently a major health problem owing to difficulties in diagnosis at the early stage of the disease. Changes in DNA methylation status have now been identified as a critical component in the initiation of lung
cancer, and the detection of DNA methylation is expected to be an important method for the early diagnosis of lung cancer. Nicotine, the principal tobacco alkaloid, directly contributes to lung carcinogenesis through the activation of nicotinic acetylcholine receptors (nAchRs). MATERIALS AND METHODS: To investigate the role of the CHRNB4 gene, which encodes the nAchR β4 subunit that is ubiquitously expressed on lung epithelial cells, we analyzed its methylation status in 266 patients with non-small cell lung cancer (NSCLC) by using methylation-specific polymerase chain reaction and compared it with clinicopathological parameters. RESULTS AND CONCLUSION: The frequency of CHRNB4 unmethylation was 13.5% and 8.3% in malignant and nonmalignant tissues, respectively. CHRNB4 demethylation was associated with upregulation of its mRNA expression and was more frequent in squamous cell carcinoma and pathological stages II-IIIA disease than in adenocarcinoma and pathological stage I disease, respectively (P=0.003 and P=0.01, respectively). Univariate and multivariate analyses showed that CHRNB4 unmethylation was significantly associated with unfavorable overall survival in the entire patient group as well as in men and ever-smokers. These results suggest that epigenetic regulation of CHRNB4 may affect tumor progression and survival in patients with NSCLC. Further investigation into the molecular basis of the role of CHRNB4 in the progression of NSCLC is warranted.
Freathy RM, etal., Hum Mol Genet. 2009 Aug 1;18(15):2922-7. doi: 10.1093/hmg/ddp216. Epub 2009 May 9.
Maternal smoking during pregnancy is associated with low birth weight and adverse pregnancy outcomes. Women are more likely to quit smoking during pregnancy than at any other time in their lives, but some pregnant women continue to smoke. A recent genome-wide association study demonstrated an associ
ation between a common polymorphism (rs1051730) in the nicotinic acetylcholine receptor gene cluster (CHRNA5-CHRNA3-CHRNB4) and both smoking quantity and nicotine dependence. We aimed to test whether the same polymorphism that predisposes to greater cigarette consumption would also reduce the likelihood of smoking cessation in pregnancy. We studied 7845 pregnant women of European descent from the South-West of England. Using 2474 women who smoked regularly immediately pre-pregnancy, we analysed the association between the rs1051730 risk allele and both smoking cessation during pregnancy and smoking quantity. Each additional copy of the risk allele was associated with a 1.27-fold higher odds (95% CI 1.11-1.45) of continued smoking during pregnancy (P = 0.0006). Adjustment for pre-pregnancy smoking quantity weakened, but did not remove this association [odds ratio (OR) 1.20 (95% CI 1.03-1.39); P = 0.018]. The same risk allele was also associated with heavier smoking before pregnancy and in the first, but not the last, trimester [OR for smoking 10+ cigarettes/day versus 1-9/day in first trimester = 1.30 (95% CI 1.13-1.50); P = 0.0003]. To conclude, we have found strong evidence of association between the rs1051730 variant and an increased likelihood of continued smoking in pregnancy and have confirmed the previously observed association with smoking quantity. Our data support the role of genetic factors in influencing smoking cessation during pregnancy.
A cluster of three nicotinic acetylcholine receptor genes on chromosome 15 (CHRNA5/CHRNA3/CHRNB4) has been shown to be associated with nicotine dependence and smoking quantity. The aim of this study was to clarify whether the variation at this locus regulates n
icotine intake among smokers by using the level of a metabolite of nicotine, cotinine, as an outcome. The number of cigarettes smoked per day (CPD) and immune-reactive serum cotinine level were determined in 516 daily smokers (age 30-75 years, 303 males) from the population-based Health2000 study. Association of 21 SNPs from a 100 kb region of chromosome 15 with cotinine and CPD was examined. SNP rs1051730 showed the strongest association to both measures. However, this SNP accounted for nearly a five-fold larger proportion of variance in cotinine levels than in CPD (R(2) 4.3% versus 0.9%). The effect size of the SNP was 0.30 for cotinine level, whereas it was 0.13 for CPD. Variation at CHRNA5/CHRNA3/CHRNB4 cluster influences nicotine level, measured as cotinine, more strongly than smoking quantity, measured by CPD, and appears thus to be involved in regulation of nicotine levels among smokers.
Genome-wide association studies have highlighted three major lung cancer susceptibility regions at 15q25.1, 5p15.33 and 6p21.33. To gain insight into the possible mechanistic relevance of the genes in these regions, we investigated the regulation of candidate susceptibility gene expression by epigen
etic alterations in healthy and lung tumor tissues. For genes up or downregulated in lung tumors, the influence of genetic variants on DNA methylation was investigated and in vitro studies were performed. We analyzed 394 CpG units within 19 CpG islands in the susceptibility regions in a screening set of 34 patients. Significant findings were validated in an independent patient set (n=50) with available DNA and RNA. The most consistent overall DNA methylation difference between tumor and adjacent normal tissue on 15q25 was tumor hypomethylation in the promoter region of CHRNB4 with a median difference of 8% (P<0.001), which resulted in overexpression of the transcript in tumors (P<0.001). Confirming previous studies, we also found hypermethylation in CHRNA3 and telomerase reverse transcriptase (TERT) with significant expression changes. Decitabine treatment of H1299 cells resulted in reduced methylation levels in gene promoters, elevated transcript levels of CHRNB4 and CHRNA3, and a slight downregulation of TERT demonstrating epigenetic regulation of lung cancer cells. Single-nucleotide polymorphisms rs421629 on 5p15.33 and rs1948, rs660652, rs8040868 and rs2036527 on 15q25.1, previously identified as lung cancer risk or nicotine-addiction modifiers, were associated with tumor DNA methylation levels in the promoters of TERT and CHRNB4 (P<0.001), respectively, in two independent sample sets (n=82; n=150). In addition, CHRNB4 knockdown in two different cell lines (A549 and H1299) resulted in reduced proliferation (PA549<0.05;PH1299<0.001) and propensity to form colonies in H1299 cells. These results suggest epigenetic deregulation of nicotinic acetylcholine receptor subunit (nAChR) genes which in the case of CHRNB4 is strongly associated with genetic lung cancer susceptibility variants and a functional impact on tumorigenic potential.
BACKGROUND: Genetic variation in the cluster on chromosome 15, encoding the nicotinic acetylcholine receptor subunits (CHRNA5-CHRNA3-CHRNB4), has shown strong associations with tobacco consumption and an additional risk increase in smoking-related diseases such
as chronic obstructive pulmonary disease (COPD), peripheral artery disease and lung cancer. OBJECTIVES: To test whether rs1051730 (C/T), a tag for multiple variants in the CHRNA5-CHRNA3-CHRNB3 cluster, is associated with a change in risk of smoking-related mortality and morbidity in the Malmo Diet and Cancer study, a population-based prospective cohort study. METHODS: At baseline participants were classified as current (n = 6951), previous (n = 8426) or never (n = 9417) smokers. Cox-proportional hazards models were used to determine the correlation between rs1051730 and incidence of first COPD, tobacco-related cancer, other cancer and cardiovascular disease (CVD), and total mortality due to these causes, during approximately 14 years of follow-up. RESULTS: Amongst current smokers there were 480 first incident COPD events, 852 tobacco-related cancers, 810 other cancers and 1022 CVD events. A total of 1508 deaths occurred, including 500 due to CVD, 102 due to respiratory diseases and 677 due to cancer. In adjusted additive models, an increasing number of T alleles were associated with a gradual increase in total mortality, incident COPD and tobacco-related cancer, even after adjustment for smoking quantity. No significant associations were observed amongst never smokers. CONCLUSION: Our data suggest that gene variance in the CHRNA5-CHRNA3-CHRNB4 cluster is associated with an increased risk of death, incidence of COPD and tobacco-related cancer in smokers. These findings indicate an individual susceptibility to tobacco use and its complications; this may be important when targeting and designing smoking cessation therapies.
Li N, etal., Front Oncol. 2020 Nov 16;10:571167. doi: 10.3389/fonc.2020.571167. eCollection 2020.
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive malignant tumors and there is a lack of biomarkers for ESCC diagnosis and prognosis. Family subunits of cholinergic nicotinic receptor genes (CHRNs) are involved in smoking behavior and tumor cell proliferation. Previous researc
hes have shown similar molecular features and pathogenic mechanisms among ESCC, head and neck squamous cell carcinoma (HNSC), and lung squamous cell carcinoma (LUSC). Using edgeR, three mutual differentially expressed genes of CHRNs were found to be significantly upregulated at the mRNA level in ESCC, LUSC, and HNSC compared to matched normal tissues. Kaplan-Meier survival analysis showed that high expression of CHRNB4 was associated with unfavorable prognosis in ESCC and HNSC. The specific expression analysis revealed that CHRNB4 is highly expressed selectively in squamous cell carcinomas compared to adenocarcinoma. Cox proportional hazards regression analysis was performed to find that just the single gene CHRNB4 has enough independent prognostic ability, with the area under curve surpassing the tumor-node-metastasis (TNM) staging-based model, the most commonly used model in clinical application in ESCC. In addition, an effective prognostic nomogram was established combining the TNM stage, gender of patients, and expression of CHRNB4 for ESCC patients, revealing an excellent prognostic ability when compared to the model of CHRNB4 alone or TNM. Gene Set Enrichment Analysis results suggested that the expression of CHRNB4 was associated with cancer-related pathways, such as the mTOR pathway. Cell Counting Kit-8, cloning formation assay, and western blot proved that CHRNB4 knockdown can inhibit the proliferation of ESCC cells via the Akt/mTOR and ERK1/2/mTOR pathways, which might facilitate the prolonged survival of patients. Furthermore, we conducted structure-based molecular docking, and potential modulators against CHRNB4 were screened from FDA approved drugs. These findings suggested that CHRNB4 specifically expressed in SCCs, and may serve as a promising biomarker for diagnosis and prognosis prediction, and it can even become a therapeutic target of ESCC patients.
Wassenaar CA, etal., J Natl Cancer Inst. 2011 Sep 7;103(17):1342-6. doi: 10.1093/jnci/djr237. Epub 2011 Jul 11.
Genetic variations in the CYP2A6 nicotine metabolic gene and the CHRNA5-CHRNA3-CHRNB4 (CHRNA5-A3-B4) nicotinic gene cluster have been independently associated with lung cancer. With genotype data from ever-smokers of European ancestry (417 lung cancer patients a
nd 443 control subjects), we investigated the relative and combined associations of polymorphisms in these two genes with smoking behavior and lung cancer risk. Kruskal-Wallis tests were used to compare smoking variables among the different genotype groups, and odds ratios (ORs) for cancer risk were estimated using logistic regression analysis. All statistical tests were two-sided. Cigarette consumption (P < .001) and nicotine dependence (P = .036) were the highest in the combined CYP2A6 normal metabolizers and CHRNA5-A3-B4 AA (tag single-nucleotide polymorphism rs1051730 G>A) risk group. The combined risk group also exhibited the greatest lung cancer risk (OR = 2.03; 95% confidence interval [CI] = 1.21 to 3.40), which was even higher among those who smoked 20 or fewer cigarettes per day (OR = 3.03; 95% CI = 1.38 to 6.66). Variation in CYP2A6 and CHRNA5-A3-B4 was independently and additively associated with increased cigarette consumption, nicotine dependence, and lung cancer risk. CYP2A6 and CHRNA5-A3-B4 appear to be more strongly associated with smoking behaviors and lung cancer risk, respectively.
Winterer G, etal., Am J Med Genet B Neuropsychiatr Genet. 2010 Dec 5;153B(8):1448-58. doi: 10.1002/ajmg.b.31126. Epub 2010 Sep 30.
Recent studies strongly support an association of the nicotinic acetylcholine receptor gene cluster CHRNA5-CHRNA3-CHRNB4 with nicotine dependence (ND). However, the precise genotype-phenotype relationship is still unknown. Clinical and epidemiological data on sm
oking behavior raise the possibility that the relevant gene variants may indirectly contribute to the development of ND by affecting cognitive performance in some smokers who consume nicotine for reasons of "cognition enhancement." Here, we tested seven single nucleotide polymorphisms (SNPs) rs684513, rs637137, rs16969968, rs578776, rs1051730, rs3743078, rs3813567 from the CHRNA5-CHRNA3-CHRNB4 gene cluster for association with ND, measures of cognitive performance and gene expression. As expected, we found all SNPs being associated with ND in three independent cohorts (KORA, NCOOP, ESTHER) comprising 5,561 individuals. In an overlapping sample of 2,186 subjects we found three SNPs (rs16969968, rs1051730, rs3743078) being associated with cognitive domains from the Wechsler-Adult-Intelligence Scale (WAIS-R)-most notably in the performance subtest "object assembly" and the verbal subtest "similarities." In a refined analysis of a subsample of 485 subjects, two of these three SNPs (rs16969968, rs1051730) were associated with n-back task performance/Continuous Performance Test. Furthermore, two CHRNA5 risk alleles (rs684513, rs637137) were associated with CHRNA5 mRNA expression levels in whole blood in a subgroup of 190 subjects. We here report for the first time an association of CHRNA5-CHRNA3-CHRNB4 gene variants with cognition possibly mediating in part risk for developing ND. The observed phenotype-genotype associations may depend on altered levels of gene expression. (c) 2010 Wiley-Liss, Inc.
Sun Y, etal., Oncotarget. 2017 Dec 20;9(2):2435-2444. doi: 10.18632/oncotarget.23459. eCollection 2018 Jan 5.
CHRNA5/CHRNA3/CHRNB4 gene cluster is located on chromosome 15q25.1 and was reported to be associated with risk of lung cancer. So far, the effect of three single nucleotide polymorphisms rs6495309, rs8040868, rs1948 in this gene cluster was unclear about lung ca
ncer risk. The aim of the present study was to evaluate the associations of rs6495309, rs8040868, rs1948 polymorphism, smoking exposure and the interaction with non-small cell lung cancer risk in Chinese population. In this hospital-based case-control study, 306 lung cancer patients and 306 cancer-free controls were interviewed to collect demographic data and exposure status of smoking, and then donate 2ml venous blood which was used to be genotyped by Taqman allelic discrimination method. Our study found that subjects carrying rs1948 CT genotype stated to be a risk factor in Chinese Han population (adjusted OR = 1.594, 95% CI = 1.066-2.383, P = 0.023) and in non-smoking population (adjusted OR = 1.896, 95%CI = 1.069-3.362, P = 0.029). rs8040868 CC genotype indicated a higher risk for lung cancer in non-smokers in a recessive model (adjusted OR = 2.496, 95%CI = 1.044-5.965, P = 0.040) and in age-based stratified analysis (age <= 60, adjusted OR = 4.213, 95%CI = 1.062-16.708, P = 0.041). All smoking interaction were positive in the multiplicative interaction of the SNPs and smoking status (-/+) compared with recessive model. Overall, these finding suggested that rs1948(C > T) and rs8040868(T > C) could be meaningful as genetic markers for lung cancer risk in Chinese Han population.
Saccone NL, etal., Cancer Res. 2009 Sep 1;69(17):6848-56. doi: 10.1158/0008-5472.CAN-09-0786. Epub 2009 Aug 25.
Genetic association studies have shown the importance of variants in the CHRNA5-CHRNA3-CHRNB4 cholinergic nicotinic receptor subunit gene cluster on chromosome 15q24-25.1 for the risk of nicotine dependence, smoking, and lung cancer in populations of European de
scent. We have carried out a detailed study of this region using dense genotyping in both European-Americans and African-Americans. We genotyped 75 known single nucleotide polymorphisms (SNPs) and one sequencing-discovered SNP in an African-American sample (N = 710) and in a European-American sample (N = 2,062). Cases were nicotine-dependent and controls were nondependent smokers. The nonsynonymous CHRNA5 SNP rs16969968 is the most significant SNP associated with nicotine dependence in the full sample of 2,772 subjects [P = 4.49 x 10(-8); odds ratio (OR), 1.42; 95% confidence interval (CI), 1.25-1.61] as well as in African-Americans only (P = 0.015; OR, 2.04; 1.15-3.62) and in European-Americans only (P = 4.14 x 10(-7); OR, 1.40; 1.23-1.59). Other SNPs that have been shown to affect the mRNA levels of CHRNA5 in European-Americans are associated with nicotine dependence in African-Americans but not in European-Americans. The CHRNA3 SNP rs578776, which has a low correlation with rs16969968, is associated with nicotine dependence in European-Americans but not in African-Americans. Less common SNPs (frequency
BACKGROUND: CHRNA5-CHRNA3-CHRNB4 and TTC12-ANKK1-DRD2 gene-clusters influence smoking behavior. Our aim was to test developmental changes in their effects as well as the interplays between them and with nongenetic factors. METHODS: Participa
nts included 4762 subjects from a general population-based, prospective Northern Finland 1966 Birth Cohort (NFBC 1966). Smoking behavior was collected at age 14 and 31 years. Information on maternal smoking, socioeconomic status, and novelty seeking were also collected. Structural equation modeling was used to construct an integrative etiologic model including genetic and nongenetic factors. RESULTS: Several single nucleotide polymorphisms in both gene-clusters were significantly associated with smoking. The most significant were in CHRNA3 (rs1051730, p = 1.1 × 10(-5)) and in TTC12 (rs10502172, p = 9.1 × 10(-6)). CHRNA3-rs1051730[A] was more common among heavy/regular smokers than nonsmokers with similar effect-sizes at age 14 years (odds ratio [95% CI]: 1.27 [1.06-1.52]) and 31 years (1.28 [1.13-1.44]). TTC12-rs10502172[G] was more common among smokers than nonsmokers with stronger association at 14 years (1.33 [1.11-1.60]) than 31 years (1.14 [1.02-1.28]). In adolescence, carriers of three-four risk alleles at either CHRNA3-rs1051730 or TTC12-rs10502172 had almost threefold odds of smoking regularly than subjects with no risk alleles. TTC12-rs10502172 effect on smoking in adulthood was mediated by its effect on smoking in adolescence and via novelty seeking. Effect of CHRNA3-rs1051730 on smoking in adulthood was direct. CONCLUSIONS: TTC12-ANKK1-DRD2s seemed to influence smoking behavior mainly in adolescence, and its effect is partially mediated by personality characteristics promoting drug-seeking behavior. In contrast, CHRNA5-CHRNA3-CHRNB4 is involved in the transition toward heavy smoking in mid-adulthood and in smoking persistence. Factors related to familial and social disadvantages were strong independent predictors of smoking.