Kolla V, etal., Cancer Res. 2014 Feb 1;74(3):652-8. doi: 10.1158/0008-5472.CAN-13-3056. Epub 2014 Jan 13.
CHD5 was first identified because of its location on 1p36 in a region of frequent deletion in neuroblastomas. CHD5 (chromodomain-helicase-DNA-binding-5) is the fifth member of a family of chromatin remodeling proteins, and i
t probably functions by forming a nucleosome remodeling and deacetylation (NuRD) complex that regulates transcription of particular genes. CHD5 is preferentially expressed in the nervous system and testis. On the basis of its position, pattern of expression, and function in neuroblastoma cells and xenografts, CHD5 was identified as a tumor suppressor gene (TSG). Evidence soon emerged that CHD5 also functioned as a TSG in gliomas and a variety of other tumor types, including breast, colon, lung, ovary, and prostate cancers. Although one copy of CHD5 is deleted frequently, inactivating mutations of the remaining allele are rare. However, DNA methylation of the CHD5 promoter is found frequently, and this epigenetic mechanism leads to biallelic inactivation. Furthermore, low CHD5 expression is strongly associated with unfavorable clinical and biologic features as well as outcome in neuroblastomas and many other tumor types. Thus, based on its likely involvement as a TSG in neuroblastomas, gliomas, and many common adult tumors, CHD5 may play an important developmental role in many other tissues besides the nervous system and testis.
Xie CR, etal., Oncotarget. 2015 Dec 1;6(38):40940-52. doi: 10.18632/oncotarget.5724.
Chromodomain helicase DNA binding protein 5 (CHD5) acts as a tumor suppressor in many cancers. In the present study, we demonstrated that reduced levels of CHD5 in hepatocellular carcinoma (HCC) tissues were significantly a
ssociated with metastasis and poor prognosis. Gain-of-function assays revealed that CHD5 suppressed motility and invasion of HCC cells. Subsequent investigations showed that CHD5 was epigenetically silenced by polycomb repressive complex 2 (PRC2)-mediated the trimethylation of histone H3 at lysine 27 (H3K27me3) in HCC cells. Furthermore, overexpression of CHD5 repressed enhancer of zeste homolog 2 (EZH2) and activated PRC2 target genes, such as p16 and p21. Chromatin immunoprecipitation and luciferase reporter assays also showed that CHD5 and EZH2 bind to each other's promoters and inhibit transcription. These findings uncovered, for the first time, a mutual suppression regulation between CHD5 and EZH2, which may provide new insights into their potential therapeutic significance for HCC.
Yu L, etal., Oncotarget. 2015 Nov 17;6(36):39225-34. doi: 10.18632/oncotarget.4407.
Previous studies showed that miR-454 acted as an oncogene or tumor suppressor in cancer. However, its function in HCC remains unknown. In this study, we found that miR-454 expression was upregulated in HCC cell lines and tissues. Knockdown of miR-454 inhibited HCC cell proliferation and invasion and
epithelial mesenchymal transition (EMT), whereas overexpression of miR-454 promoted HCC cell proliferation and invasion and EMT. Furthermore, we identified the CHD5 as a direct target of miR-454. CHD5 was downregulated in HCC tissues and cell lines and the expression level of CHD5 was inversely correlated with the expression of miR-454 in HCC tissues. In addition, knockdown of miR-454 inhibited the growth of HepG2-engrafted tumors in vivo. Taken together, these results indicated that miR-454 functioned as an oncogene in HCC.
Chd5 is an essential factor for neuronal differentiation and spermatogenesis and is a known tumor suppressor. H3K27me3 and H3K4un are modifications recognized by Chd5; however, it remains unclear how Chd5
:700;'>Chd5 remodels chromatin structure. We completely disrupted the Chd5 locus using the CRISPR-Cas9 system to generate a 52¿kbp long deletion and analyzed Chd5 function in mouse embryonic stem cells. Our findings show that Chd5 represses murine endogenous retrovirus-L (MuERV-L/MERVL), an endogenous retrovirus-derived retrotransposon, by regulating H3K27me3 and H3.1/H3.2 function.
CHD5 is frequently deleted in neuroblastoma and is a tumor suppressor gene. However, little is known about the role of CHD5 other than it is homologous to chromatin remodeling ATPases. We found CHD5
>CHD5 mRNA was restricted to the brain; by contrast, most remodeling ATPases were broadly expressed. CHD5 protein isolated from mouse brain was associated with HDAC2, p66ss, MTA3 and RbAp46 in a megadalton complex. CHD5 protein was detected in several rat brain regions and appeared to be enriched in neurons. CHD5 protein was predominantly nuclear in primary rat neurons and brain sections. Microarray analysis revealed genes that were upregulated and downregulated when CHD5 was depleted from primary neurons. CHD5 depletion altered expression of neuronal genes, transcription factors, and brain-specific subunits of the SWI/SNF remodeling enzyme. Expression of gene sets linked to aging and Alzheimer's disease were strongly altered by CHD5 depletion from primary neurons. Chromatin immunoprecipitation revealed CHD5 bound to these genes, suggesting the regulation was direct. Together, these results indicate that CHD5 protein is found in a NuRD-like multi-protein complex. CHD5 expression is restricted to the brain, unlike the closely related family members CHD3 and CHD4. CHD5 regulates expression of neuronal genes, cell cycle genes and remodeling genes. CHD5 is linked to regulation of genes implicated in aging and Alzheimer's disease.
Mallette FA and Richard S, Cell Rep. 2012 Nov 29;2(5):1233-43. doi: 10.1016/j.celrep.2012.09.033. Epub 2012 Nov 15.
Senescence is a cellular response preventing tumorigenesis. The Ras oncogene is frequently activated or mutated in human cancers, but Ras activation is insufficient to transform primary cells. In a search for cooperating oncogenes, we identify the lysine demethylase JMJD2A/KDM4A. We show that JMJD2A
functions as a negative regulator of Ras-induced senescence and collaborates with oncogenic Ras to promote cellular transformation by negatively regulating the p53 pathway. We find CHD5, a known tumor suppressor regulating p53 activity, as a target of JMJD2A. The expression of JMJD2A inhibits Ras-mediated CHD5 induction leading to a reduced activity of the p53 pathway. In addition, we show that JMJD2A is overexpressed in mouse and human lung cancers. Depletion of JMJD2A in the human lung cancer cell line A549 bearing an activated K-Ras allele triggers senescence. We propose that JMJD2A is an oncogene that represents a target for Ras-expressing tumors.
Parenti I, etal., Hum Genet. 2021 Jul;140(7):1109-1120. doi: 10.1007/s00439-021-02283-2. Epub 2021 May 4.
Located in the critical 1p36 microdeletion region, the chromodomain helicase DNA-binding protein 5 (CHD5) gene encodes a subunit of the nucleosome remodeling and deacetylation (NuRD) complex required for neuronal development. Pathogenic variants in six of nine c
hromodomain (CHD) genes cause autosomal dominant neurodevelopmental disorders, while CHD5-related disorders are still unknown. Thanks to GeneMatcher and international collaborations, we assembled a cohort of 16 unrelated individuals harboring heterozygous CHD5 variants, all identified by exome sequencing. Twelve patients had de novo CHD5 variants, including ten missense and two splice site variants. Three familial cases had nonsense or missense variants segregating with speech delay, learning disabilities, and/or craniosynostosis. One patient carried a frameshift variant of unknown inheritance due to unavailability of the father. The most common clinical features included language deficits (81%), behavioral symptoms (69%), intellectual disability (64%), epilepsy (62%), and motor delay (56%). Epilepsy types were variable, with West syndrome observed in three patients, generalized tonic-clonic seizures in two, and other subtypes observed in one individual each. Our findings suggest that, in line with other CHD-related disorders, heterozygous CHD5 variants are associated with a variable neurodevelopmental syndrome that includes intellectual disability with speech delay, epilepsy, and behavioral problems as main features.