Minegishi Y, etal., J Clin Invest. 1999 Oct;104(8):1115-21. doi: 10.1172/JCI7696.
Mutations in Btk, mu heavy chain, or the surrogate light chain account for 85-90% of patients with early onset hypogammaglobulinemia and absent B cells. The nature of the defect in the remaining patients is unknown. We screened 25 such patients for mutations in genes encoding components of the pre-B
-cell receptor (pre-BCR) complex. A 2-year-old girl was found to have a homozygous splice defect in Igalpha, a transmembrane protein that forms part of the Igalpha/Igbeta signal-transduction module of the pre-BCR. Studies in mice suggest that the Igbeta component of the pre-BCR influences V-DJ rearrangement before cell-surface expression of mu heavy chain. To determine whether Igalpha plays a similar role, we compared B-cell development in an Igalpha-deficient patient with that seen in a mu heavy chain-deficient patient. By immunofluorescence, both patients had a complete block in B-cell development at the pro-B to pre-B transition; both patients also had an equivalent number and diversity of rearranged V-DJ sequences. These results indicate that mutations in Igalpha can be a cause of agammaglobulinemia. Furthermore, they suggest that Igalpha does not play a critical role in B-cell development until it is expressed, along with mu heavy chain, as part of the pre-BCR.
Wang Y, etal., Am J Med Genet. 2002 Apr 1;108(4):333-6. doi: 10.1002/ajmg.10296.
Mutations that impair early B cell development result in profound antibody deficiency, which is characterized by a paucity of mature B cells and the early onset of recurrent pyogenic infections. Among these inherited early B cell defects, X-linked agammaglobulinemia (XLA) with mutations in Bruton's
tyrosine kinase (BTK) gene is mostly identified. Recent studies have shown that mutations in the gene for mu heavy chain (IGHM) and for other components of the pre-B cell receptor complex, including lambda5/14.1 (IGLL1) or Igalpha (CD79a), can cause a disorder that is clinically similar to XLA. In a genetic survey of XLA in Turkey, we examined possible mutations in the IGHM, IGLL1, and Igalpha genes in some male patients with presumed XLA who did not have identifiable BTK mutations. We found an eight-year-old boy with a novel homozygous mutation in the Igalpha gene (IVS2+1G>A) causing B cell defect. This is the second case of agammaglobulinemia due to an Igalpha (CD79a) deficiency in the world.
Low levels of B-cell-receptor (BCR) expression are the hallmark of tumoral B lymphocytes in B-cell chronic lymphocytic leukemia (B-CLL). These cells also respond inadequately to stimulation through the BCR. This receptor consists of a surface immunoglobulin associated with a CD79a/CD79b heterodimer
. We previously showed that the intracellular synthesis of BCR components, from transcription onward, is normal. Here, we investigated the glycosylation status and cellular localization of mu, CD79a, and CD79b chains in 10 CLL patients differing in surface immunoglobulin M (IgM) expression. We reported a severe impairment of the glycosylation and folding of mu and CD79a. These defects were associated with the retention of both chains in the endoplasmic reticulum and lower levels of surface IgM expression. In contrast, no clear impairment of glycosylation and folding was observed for CD79b. No sequence defects were identified for BCR components and for the chaperone proteins involved in BCR folding processes. These data show, for the first time, that lower levels of BCR surface expression observed in CLL are accounted for by an impaired glycosylation and folding of the mu and CD79a chains.