In our work, we analyzed the role of the CD100/CD72 and PD-1/PD-L1 axes in immune response dysfunction in human immunodeficiency virus (HIV)-1 infection in which high expressions of PD-1 and PD-L1 were associated with an immunosuppressive state via limitation of
the HIV-1-specific T-cell responses. CD100 was demonstrated to play a relevant role in immune responses in various pathological processes and may be responsible for immune dysregulation during HIV-1 infection. We investigated the function of CD72/CD100, and PD-1/PDL-1 axes on T and B cells in HIV-infected individuals and in healthy individuals. We analyzed the frequencies and fluorescence intensities of these four markers on CD4+, CD8+ T and B cells. Marker expressions were increased during active HIV-1 infection. CD100 frequency on T cells was positively associated with the expression of PD-1 and PD-L1 on T cells from HIV-infected treatment-naïve individuals. In addition, the frequency of CD72-expressing T cells was associated with interferon gamma (IFN-γ) production in HIV-infected treatment-naïve individuals. Our data suggest that the CD72/CD100 and PD-1/PD-L1 axes may jointly participate in dysregulation of immunity during HIV-1 infection and could partially explain the immune systems' hyper-activation and exhaustion.
Cetin GO, etal., Eur Rev Med Pharmacol Sci. 2016 Mar;20(5):830-6.
OBJECTIVE: We aimed to determine the hot spot mutational frequencies of Enhancer of Zeste homolog 2 (EZH2) and cluster of differentiation 79B (CD79B) genes in a cohort of mature B-cell non-Hodgkin's lymphomas. PATIENTS AND METHODS: DNA sampl
es from formalin-fixed and paraffin embedded (FFPE) tissues from a total of 37 patients with mature B-cell non-Hodgkin lymphomas were included in the study. Molecular genetic analysis was performed by direct sequencing of the DNA samples. RESULTS: We analyzed formaldehyde fixed-paraffin embedded (FFPE) tumor tissue samples from 17 female and 20 male patients with a median age of 63.7 years at the time of diagnosis. None of the patients had previously reported hot spot mutations in EZH2 and CD79B, but previously unreported single nucleotide variations of CD79B were present in nine patients. rs779833118 was the most frequent variation (7/37 patients, 18.9%). A non-synonymous variation rs757407417, which could have a potentially damaging outcome, was detected in two patients. CONCLUSIONS: None of the patients had well-known hot spot mutations in EZH2 and CD79B. However, we detected novel CD79B variations in mature B-cell non-Hodgkin's lymphoma patients.
Over the last decades, advances in the knowledge of immunology have led to the identification of immune checkpoints, reinvigorating cancer immunotherapy. Although normally restricted to activated T and B cells, constitutive expression of CD70 in tumor cells has
been described. Moreover, CD70 is implicated in tumor cell and regulatory T cell survival through interaction with its ligand, CD27. In this review, we summarize the targetable expression patterns of CD70 in a wide range of malignancies and the promising mechanism of anti-CD70 therapy in stimulating the anti-tumor immune response. In addition, we will discuss clinical data and future combination strategies.
Leng L, etal., J Exp Med 2003 Jun 2;197(11):1467-76.
Macrophage migration inhibitory factor (MIF) accounts for one of the first cytokine activities to have been described, and it has emerged recently to be an important regulator of innate and adaptive immunity. MIF is an upstream activator of monocytes/macrophages, and it is centrally involved in the
pathogenesis of septic shock, arthritis, and other inflammatory conditions. The protein is encoded by a unique but highly conserved gene, and X-ray crystallography studies have shown MIF to define a new protein fold and structural superfamily. Although recent work has begun to illuminate the signal transduction pathways activated by MIF, the nature of its membrane receptor has not been known. Using expression cloning and functional analysis, we report herein that CD74, a Type II transmembrane protein, is a high-affinity binding protein for MIF. MIF binds to the extracellular domain of CD74, and CD74 is required for MIF-induced activation of the extracellular signal-regulated kinase-1/2 MAP kinase cascade, cell proliferation, and PGE2 production. A recombinant, soluble form of CD74 binds MIF with a dissociation constant of approximately 9 x 10-9 Kd, as defined by surface plasmon resonance (BIAcore analysis), and soluble CD74 inhibits MIF-mediated extracellular signal-regulated kinase activation in defined cell systems. These data provide a molecular basis for MIF's interaction with target cells and identify it as a natural ligand for CD74, which has been implicated previously in signaling and accessory functions for immune cell activation.
Pich C, etal., Br J Cancer. 2016 Jan 12;114(1):63-70. doi: 10.1038/bjc.2015.412. Epub 2015 Dec 15.
BACKGROUND: CD70 is a costimulatory molecule of the tumour necrosis factor family expressed in activated immune cells and some solid tumours. In lymphocytes CD70 triggers T cell-mediated cytotoxicity and mitogen-activated pr
otein kinase phosphorylation. METHODS: We evaluated the expression of CD70 in biopsies and melanoma cell lines. Using melanoma cell lines positive or not for CD70, we analysed CD70 function on melanoma progression. RESULTS: We report CD70 expression in human melanoma cell lines and tumour cells from melanoma biopsies. This expression was observed in 95% of primary melanomas but only 37% of metastases. Both monomeric and trimeric forms of CD70 were detected in tumour cell membrane fractions, whereas cytoplasmic fractions contained almost exclusively monomeric CD70. In vitro and in vivo experiments demonstrated that CD70 expression inhibited melanoma cell migration, invasion and pulmonary metastasis implantation independently of the tumour immune microenvironment. Increasing the levels of the trimeric form of CD70 through monoclonal antibody binding led to an increase in CD70+ melanoma cell invasiveness through MAPK pathway activation, RhoE overexpression, ROCK1 and MYPT1 phosphorylation decrease, and stress fibres and focal adhesions disappearance. CONCLUSIONS: Our results describe a new non-immunological function of melanoma-expressed CD70, which involves melanoma invasiveness through MAPK pathway, RhoE and cytoskeletal modulation.
Meyer-Siegler KL and Vera PL, J Urol 2005 Feb;173(2):615-20.
PURPOSE: Substance P (SP) induces rat bladder inflammation along with release of the proinflammatory cytokine, macrophage migration inhibitory factor (MIF). To describe the mechanism of MIF action we examined changes in the amount of CD74 (membrane receptor for
MIF), CD44 and phospho-(p-ERK)1/2 in the bladder. MATERIALS AND METHODS: In anesthetized rats the bladder was isolated by cutting the ureters and urine was replaced by saline as intraluminal fluid (ILF). One hour after subcutaneous SP (40 mug/kg) or saline administration the ILF and bladder were collected. Bladder tissue was analyzed for CD74 and CD44 by immunohistochemistry. Western blot analysis determined the relative amounts of bladder tissue MIF, CD74, CD44 and p-ERK1/2. ILF immunoprecipitation followed by Western blot analysis was performed to identify an association of MIF with CD74 and/or CD44. RESULTS: SP induced significant MIF release from the bladder and increased CD74 and CD44 bladder immunostaining. SP treatment increased the total amount of bladder CD74 protein and mRNA, intracellular domain CD44, p-ERK1/2 and soluble CD44 in the ILF. Finally, MIF was found to be associated with soluble CD44 in the ILF. CONCLUSIONS: CD74 is present in the rat urothelium. SP increases CD74 and intracellular domain CD44 in the bladder, while stimulating the release of soluble CD44 and MIF into the ILF. MIF interacts with soluble CD44 in the ILF and it is available to bind with CD74 in the bladder to exert proinflammatory effects. Therefore, a mechanistic model is emerging to explain the proinflammatory effects of MIF in this acute model of bladder inflammation. Possible clinical implications are discussed.
The ectoenzyme CD73 catalyzes the hydrolysis of AMP, and is one of the most important producers of extracellular adenosine. On regulatory T cells, CD73 is necessary for immunosuppressive functions, and on Th17 cells CD7
yle='font-weight:700;'>CD73-generated adenosine exerts anti-inflammatory effects. However, the expression and function of CD73 in pro-inflammatory M1 and in immunosuppressive M2 macrophages is largely unknown. Here we show that CD73 expression and enzyme activity were induced in in vitro polarized pro-inflammatory human M(LPS+TNF) monocytes/macrophages, while CD73 was absent from immunosuppressive M(IL-4+M-CSF)-polarized macrophages. Inhibition of CD73 activity with the inhibitor AMPCP did not affect the polarization of human monocytes. In mice, CD73 was present on resident peritoneal macrophages. In striking contrast, elicited peritoneal macrophages remained CD73 negative regardless of their polarization towards either a pro-inflammatory M(LPS) or anti-inflammatory M(IL-4c) direction. Finally, the ability of peritoneal macrophages to polarize to pro- and anti-inflammatory cells was perfectly normal in CD73-deficient mice in vivo. These data indicate that, in contrast to other major leukocyte subpopulations, CD73 activity on macrophages does not play a major role in their polarization and that in mice host CD73 on any cell type is not required in vivo for peritoneal macrophage polarization towards either a pro- or an anti-inflammatory direction.
Leclerc BG, etal., Clin Cancer Res. 2016 Jan 1;22(1):158-66. doi: 10.1158/1078-0432.CCR-15-1181. Epub 2015 Aug 7.
PURPOSE: CD73 is an adenosine-generating ecto-enzyme that suppresses antitumor immunity in mouse models of cancer, including prostate cancer. Although high levels of CD73 are associated with poor prognosis in various types o
f cancer, the clinical impact of CD73 in prostate cancer remains unclear. EXPERIMENTAL DESIGN: We evaluated the prognostic value of CD73 protein expression and CD8(+) cell density in 285 cases of prostate cancer on tissue microarray (TMA). Normal adjacent and tumor tissues were evaluated in duplicates. RESULTS: Univariate and multivariate analyses revealed that high levels of CD73 in normal adjacent prostate epithelium were significantly associated with shorter biochemical recurrence (BCR)-free survival. Notably, CD73 expression in normal epithelium conferred a negative prognostic value to prostate-infiltrating CD8(+) cells. Surprisingly, high levels of CD73 in the tumor stroma were associated with longer BCR-free survival in univariate analysis. In vitro studies revealed that adenosine signaling inhibited NF-kappaB activity in human prostate cancer cells via A2B adenosine receptors. Consistent with these results, CD73 expression in the prostate tumor stroma negatively correlated with p65 expression in the nuclei of prostate tumor cells. CONCLUSIONS: Our study revealed that CD73 is an independent prognostic factor in prostate cancer. Our data support a model in which CD73 expression in the prostate epithelium suppresses immunosurveillance by CD8(+) T cells, whereas CD73 expression in the tumor stroma reduces NF-kappaB signaling in tumor cells via A2B adenosine receptor signaling. CD73 expression, including in normal adjacent prostate epithelium, can thus effectively discriminate between aggressive and indolent forms of prostate cancer.
Jackson EK, etal., Physiol Rep. 2013 Aug 20;1(3). pii: e00057.
Adenosine formed during renal sympathetic nerve stimulation (RSNS) enhances, by activating A1 receptors, the postjunctional effects of released norepinephrine and participates in renal sympathetic neurotransmission. Because in many cell types CD73 (ecto-5'-nucle
otidase) is important for the conversion of 5'-AMP to adenosine, we investigated whether CD73 is necessary for normal renal sympathetic neurotransmission. In isolated kidneys from CD73 wild-type mice (CD73 +/+; n=17) perfused at a constant rate with Tyrode's solution, RSNS increased perfusion pressure by 17+/-4, 36+/-8 and 44+/-10 mm Hg at 3, 5 and 7 Hz, respectively. Similar responses were elicited from kidneys isolated from CD73 knockout mice (CD73 -/-; n=13; 28+/-11, 43+/-10 and 44+/-10 mm Hg at 3, 5 and 7 Hz, respectively); and a high concentration (100 mumol/L) of alpha,beta-methyleneadenosine 5'-diphosphate (CD73 inhibitor) did not alter responses to RSNS in C57BL/6 mouse kidneys (n=5; 21+/-5, 36+/-8 and 43+/-9 at 3, 5 and 7 Hz, respectively). Measurements of renal venous adenosine and inosine (adenosine metabolite) by liquid chromatography-tandem mass spectrometry demonstrated that the metabolism of exogenous 5'-AMP to adenosine and inosine was similar in CD73 -/- versus CD73 +/+ kidneys. A1 receptor mRNA expression was increased in CD73 -/- kidneys, and 2-chloro-N6-cyclopentyladenosine (0.1 mumol/L; A1 receptor agonist) enhanced renovascular responses to norepinephrine more in CD73 -/- versus CD73 +/+ kidneys. We conclude that CD73 is not essential for renal sympathetic neurotransmission because in the absence of renal CD73 other enzymes metabolize 5'-AMP to adenosine and because of compensatory upregulation of postjunctional coincident signaling between norepinephrine and adenosine.
Katsuta E, etal., Int J Oncol. 2016 Feb;48(2):657-69. doi: 10.3892/ijo.2015.3299. Epub 2015 Dec 18.
Identification and purification of cancer stem cells (CSCs) lead to the discovery of novel therapeutic targets; however, there has been no study on isolation of the CSC population among pancreatic neuroendocrine tumors (pNETs). This study aimed to identify pNET CSCs and to characterize a therapeutic
candidate for pNET CSCs. We identified CSCs by aldehyde dehydrogenase (ALDH) activity in pNET clinical specimens and cell lines. We verified whether or not these cells have the stemness property in vivo and in vitro. ALDHhigh cells, but not control bulk cells, formed spheres, proliferated under hypoxic condition as well as normoxic condition and promoted cell motility, which are features of CSCs. Injection of as few as 10 ALDHhigh cells led to subcutaneous tumor formation, and 105 ALDHhigh cells, but not control bulk cells, established metastases in mice. Comprehensive gene expression analysis revealed that genes associated with mesenchymal stem cells, including CD73, were overexpressed in ALDHhigh cells. Additionally, the in vitro and in vivo effects of an inhibitor of CD73 were investigated. The CD73 inhibitor APCP significantly attenuated in vitro sphere formation and cell motility, as well as in vivo tumor growth observed for ALDHhigh cells. Finally, its expression was evaluated using clinical pNET tissue samples. Immunohistochemical analysis of clinical tissue samples demonstrated CD73 expression was significantly correlated with the invasion into adjacent organs. Since recent studies revealed CD73 as a potential biomarker of anti-PD-1 immune checkpoint therapy, CD73 might be a promising therapeutic target for pNET CSCs.
The purpose of the present study was to explore the role and mechanism of extracellular ecto-5'-nucleotidase (CD73) in human colorectal cancer growth. Firstly, CD73 expression was detected in colorectal cancer cell lines bot
h at the mRNA and protein levels. Secondly, recombinant CD73 interference and overexpression lentiviruses were used, respectively. Colony formation assay, CCK-8 assay and flow cytometry were used to investigate the impact of CD73 on colorectal cancer cell proliferation and cell cycle distribution. Then, adenosine and CD73 enzyme activity inhibitor (APCP) were used to study the effect of CD73 on Epidermal growth factor receptor (EGFR) and beta-catenin/cyclin D1 signaling pathways. Finally, a human colorectal cancer transplantation nude mouse model was used to observe the effect of CD73 on tumor growth in vivo. As the results showed, CD73 was highly expressed in the colorectal cancer cell lines. CD73 promoted colorectal cancer cell proliferation both in vivo and in vitro. CD73 activated EGFR and the beta-catenin/cyclin D1 signaling pathways through its enzyme and non-enzyme activities. All of the results confirmed that CD73 promotes the growth of human colorectal cancer cells through EGFR and the beta-catenin/cyclin D1 signaling pathway. CD73 may be used as a valuable biomarker of colorectal cancer.
David L, etal., Immunology. 2016 Feb;147(2):204-11. doi: 10.1111/imm.12551. Epub 2015 Dec 21.
Rheumatoid arthritis (RA) is associated with the presence of certain HLA class II genes. However, why some individuals carrying RA non-associated alleles develop arthritis is still unexplained. The trans-heterodimer between two RA non-associated HLA genes can render susceptibility to develop arthrit
is in humanized mice, DQA1*0103/DQB1*0604, suggesting a role for DQ alpha chains in pathogenesis. In this study we determined the role of DQA1 in arthritis by using mice expressing DQA1*0103 and lacking endogenous class II molecules. Proximity ligation assay showed that DQA1*0103 is expressed on the cell surface as a dimer with CD74. Upon immunization with type II collagen, DQA1*0103 mice generated an antigen-specific cellular and humoral response and developed severe arthritis. Structural modelling suggests that DQA1*0103/CD74 form a pocket with similarity to the antigen binding pocket. DQA1*0103 mice present type II collagen-derived peptides that are not presented by an arthritis-resistant DQA1*0103/DQB1*0601 allele, suggesting that the DQA1*0103/CD74 dimer may result in presentation of unique antigens and susceptibility to develop arthritis. The present data provide a possible explanation by which the DQA1 molecule contributes to susceptibility to develop arthritis.
Minegishi Y, etal., J Clin Invest. 1999 Oct;104(8):1115-21. doi: 10.1172/JCI7696.
Mutations in Btk, mu heavy chain, or the surrogate light chain account for 85-90% of patients with early onset hypogammaglobulinemia and absent B cells. The nature of the defect in the remaining patients is unknown. We screened 25 such patients for mutations in genes encoding components of the pre-B
-cell receptor (pre-BCR) complex. A 2-year-old girl was found to have a homozygous splice defect in Igalpha, a transmembrane protein that forms part of the Igalpha/Igbeta signal-transduction module of the pre-BCR. Studies in mice suggest that the Igbeta component of the pre-BCR influences V-DJ rearrangement before cell-surface expression of mu heavy chain. To determine whether Igalpha plays a similar role, we compared B-cell development in an Igalpha-deficient patient with that seen in a mu heavy chain-deficient patient. By immunofluorescence, both patients had a complete block in B-cell development at the pro-B to pre-B transition; both patients also had an equivalent number and diversity of rearranged V-DJ sequences. These results indicate that mutations in Igalpha can be a cause of agammaglobulinemia. Furthermore, they suggest that Igalpha does not play a critical role in B-cell development until it is expressed, along with mu heavy chain, as part of the pre-BCR.
Schroder B Biochim Biophys Acta. 2016 Jun;1863(6 Pt A):1269-81. doi: 10.1016/j.bbamcr.2016.03.026. Epub 2016 Mar 28.
The invariant chain (CD74) is well known for its essential role in antigen presentation by mediating assembly and subcellular trafficking of the MHCII complex. Beyond this, CD74 has also been implicated in a number of proces
ses independent of MHCII. These include the regulation of endosomal trafficking, cell migration and cellular signalling as surface receptor of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF). In several forms of cancer, CD74 is up-regulated and associated with enhanced proliferation and metastatic potential. In this review, an overview of the diverse biological functions of the CD74 protein is provided with a particular focus on how these may be regulated. In particular, proteolysis of CD74 will be discussed as a central mechanism to control the actions of this important protein at different levels.
Ecto-5'-nucleotidase (CD73) is central to the generation of extracellular adenosine. Previous studies have highlighted a detrimental role for extracellular adenosine in cancer, as it dampens T cell-mediated immune responses. Here, we determined that, in contrast
to other cancers, CD73 is markedly downregulated in poorly differentiated and advanced-stage endometrial carcinoma compared with levels in normal endometrium and low-grade tumors. In murine models, CD73 deficiency led to a loss of endometrial epithelial barrier function, and pharmacological CD73 inhibition increased in vitro migration and invasion of endometrial carcinoma cells. Given that CD73-generated adenosine is central to regulating tissue protection and physiology in normal tissues, we hypothesized that CD73-generated adenosine in endometrial carcinoma induces an innate reflex to protect epithelial integrity. CD73 associated with cell-cell contacts, filopodia, and membrane zippers, indicative of involvement in cell-cell adhesion and actin polymerization-dependent processes. We determined that CD73-generated adenosine induces cortical actin polymerization via adenosine A1 receptor (A1R) induction of a Rho GTPase CDC42-dependent conformational change of the actin-related proteins 2 and 3 (ARP2/3) actin polymerization complex member N-WASP. Cortical F-actin elevation increased membrane E-cadherin, beta-catenin, and Na(+)K(+) ATPase. Together, these findings reveal that CD73-generated adenosine promotes epithelial integrity and suggest why loss of CD73 in endometrial cancer allows for tumor progression. Moreover, our data indicate that the role of CD73 in cancer is more complex than previously described.
Thompson AA, etal., Blood. 1997 Aug 15;90(4):1387-94.
Leukemic B cells in chronic lymphocytic leukemia (B-CLL) typically exhibit low or undetectable surface Ig. Because the B29 (CD79b and Ig beta) and mb-1 (CD79a and Ig alpha) gene products are required for surface Ig display
in the B-cell receptor complex (BCR), we analyzed the expression of these genes in B-CLL cells. The majority (83%) of the randomly selected B-CLL patient samples analyzed exhibited low or undetectable surface BCR measured by mu heavy chain and B29 expression. Levels of mb-1 mRNA in these B-CLL samples with low surface BCR were similar to those in normal B cells. Among those with decreased surface expression, B29 mRNA was not detected in half of these B-CLL samples. The remaining B-CLL samples with diminished surface BCR contained normal levels of B29 mRNA. Further analysis of cDNA clones from the majority of these latter samples contained point mutations, insertions, or deletions that were largely located in the B29 transmembrane and cytoplasmic domains. These results indicate the occurrence of somatic mutations predicted to affect B29 expression and/or function in the majority of B-CLL and suggest that these aberrations underlie the diminished surface BCR display and loss of BCR signaling characteristic of this leukemia.
Targeting cytotoxic drugs to cancer cells using antibody-drug conjugates (ADCs), particularly those with stable linkers between the drug and the antibody, could be an effective cancer treatment with low toxicity. However, for stable-linker ADCs to be effective, they must be internalized and degraded
, limiting potential targets to surface antigens that are trafficked to lysosomes. CD79a and CD79b comprise the hetrodimeric signaling component of the B-cell receptor, and are attractive targets for the use of ADCs because they are B-cell-specific, expressed in non-Hodgkin lymphomas (NHL), and are trafficked to a lysosomal-like compartment as part of antigen presentation. We show here that the stable-linker ADCs anti-CD79b-MCC-DM1 and anti-CD79b-MC-MMAF are capable of target-dependent killing of nonHodgkin lymphoma cell lines in vitro. Further, these 2 ADCs are equally effective as low doses in xenograft models of follicular, mantle cell, and Burkitt lymphomas, even though several of these cell lines express relatively low levels of CD79b in vivo. In addition, we demonstrate that anti-CD79b ADCs were more effective than anti-CD79a ADCs and that, as hypothesized, anti-CD79b antibodies downregulated surface B-cell receptor and were trafficked to the lysosomal-like major histocompatibility complex class II-positive compartment MIIC. These results suggest that anti-CD79b-MCC-DM1 and anti-CD79b-MC-MMAF are promising therapeutics for the treatment of NHL.
T cells compete against each other for access to molecules on APCs in addition to peptide/MHC complexes. However, the identity of cell surface molecules that influence T-cell competition, other than peptide/MHC, have yet to be defined. Here, we identify CD70, a
TNF ligand expressed on activated APCs, as an important mediator of T-cell competition for APCs. Upon engagement of CD27 by CD70, CD27 is proteolytically cleaved from the surface of the interacting CD8(+) T cell and captured by CD70 expressing dendritic cells. The capture of CD27 effectively masks CD70 on APCs, disallowing the interaction with CD27 on other competing T cells. Collectively, our data indicate that T cells compete against each other for access to the TNF-ligand CD70, an interaction that affects the duration and potency of T cell/DC interactions, thus influencing the repertoire of responding CD8(+) T cells to self or foreign antigens.
Young A, etal., Cancer Cell. 2016 Sep 12;30(3):391-403. doi: 10.1016/j.ccell.2016.06.025.
Preclinical studies targeting the adenosinergic pathway have gained much attention for their clinical potential in overcoming tumor-induced immunosuppression. Here, we have identified that co-blockade of the ectonucleotidase that generates adenosine CD73 and the
A2A adenosine receptor (A2AR) that mediates adenosine signaling in leuokocytes, by using compound gene-targeted mice or therapeutics that target these molecules, limits tumor initiation, growth, and metastasis. This tumor control requires effector lymphocytes and interferon-gamma, while antibodies targeting CD73 promote an optimal therapeutic response in vivo when engaging activating Fc receptors. In a two-way mixed leukocyte reaction using a fully human anti-CD73, we demonstrated that Fc receptor binding augmented the production of proinflammatory cytokines.
Primary breast diffuse large B-cell lymphoma (PB-DLBCL) is a rare disease comprising <3% of extranodal lymphomas. It frequently reveals an activated B-cell (ABC)-like phenotype. ABC-like DLBCL was reported to have gain-of-function mutations in MYD88, CD79B, CARD
11, and TNFAIP3, resulting in constitutive activation of the NFkappaB pathway. Because of the rare occurrence of PB-DLBCL, the frequency of MYD88 and CD79B mutations is still unknown. We used Sanger sequencing to study these mutations from 46 breast DLBCL cases and also investigated the associated clinicopathologic factors. MYD88 L265P was confirmed by allele-specific polymerase chain reaction and compared with the Sanger sequencing results. MYD88 L265P and CD79B mutations were detected in 27/46 (58.7%) and 11/33 (33.3%) cases, respectively. Twenty-eight of 46 cases met the criteria for PB-DLBCL, and the latter 18 cases were further classified as clinical breast DLBCL (CLB-DLBCL). The frequency of MYD88 L265P and CD79B mutations was 16/28 (57.1%) and 9/23 (39.1%), respectively, in PB-DLBCL and 11/18 (61.1%) and 2/10 (20%), respectively, in CLB-DLBCL. When the cutoff value was set at DeltaCt=1, the result of allele-specific polymerase chain reaction for MYD88 corresponded to those of the Sanger sequence at 92.6% sensitivity and 100% specificity. According to Choi's algorithm, 16/27 (59.3%) demonstrated an ABC-like phenotype in PB-DLBCL, and 15/18 (83.3%) demonstrated an ABC-like phenotype in CLB-DLBCL. In conclusion, MYD88 L265P and CD79B mutations were frequently detected in PB-DLBCL, and they may be key molecules associated with PB-DLBCL lymphomagenesis. Further analysis will be required to clarify the mechanism of its pathogenesis.
Payelle-Brogard B, etal., Blood. 1999 Nov 15;94(10):3516-22.
The B-cell antigen receptor (BCR) comprises membrane Igs (mIgs) and a heterodimer of Igalpha (CD79a) and Igbeta (CD79b) transmembrane proteins, encoded by the mb-1 and B29 genes, respectively. These accessory proteins are re
quired for surface expression of mIg and BCR signaling. B cells from chronic lymphocytic leukemia (B-CLL) frequently express low to undetectable surface Ig, as well as CD79b protein. Recent work described genetic aberrations affecting B29 expression and/or function in B-CLL. Because the prevalence of CLL is increased among first degree relatives, we analyzed the B29 gene in 10 families including 2 affected members each. A few silent or replacement mutations were observed at the genomic level, which never lead to truncated CD79b protein. Both members of the same family did not harbor the same mutations. However, a single silent base change in the B29 extracellular domain, corresponding to a polymorphism, was detected on 1 allele of most patients. These results indicate that the few mutations observed in the B29 gene in these patients do not induce structural abnormalities of the CD79b protein and thus do not account for its low surface expression in B-CLL. Furthermore, genetic factors were not implicated, because identical mutations were not observed among 2 members of the same family.
The CD73 ectonucleotidase catalyses the hydrolysis of AMP to adenosine, an immunosuppressive molecule. Recent evidence has demonstrated that this ectonucleotidase is up-regulated in T helper type 17 cells when generated in the presence of transforming growth fa
ctor-beta (TGF-beta), and hence CD73 expression is related to the acquisition of immunosuppressive potential by these cells. TGF-beta is also able to induce CD73 expression in CD8(+) T cells but the function of this ectonucleotidase in CD8(+) T cells is still unknown. Here, we show that Tc17 cells present high levels of the CD73 ectonucleotidase and produce adenosine; however, they do not suppress the proliferation of CD4(+) T cells. Interestingly, we report that adenosine signalling through A2A receptor favours interleukin-17 production and the expression of stem cell-associated transcription factors such as tcf-7 and lef-1 but restrains the acquisition of Tc1-related effector molecules such as interferon-gamma and Granzyme B by Tc17 cells. Within the tumour microenvironment, CD73 is highly expressed in CD62L(+) CD127(+) CD8(+) T cells (memory T cells) and is down-regulated in GZMB(+) KLRG1(+) CD8(+) T cells (terminally differentiated T cells), demonstrating that CD73 is expressed in memory/naive cells and is down-regulated during differentiation. These data reveal a novel function of CD73 ectonucleotidase in arresting CD8(+) T-cell differentiation and support the idea that CD73-driven adenosine production by Tc17 cells may promote stem cell-like properties in Tc17 cells.
Melanoma is believed to be a highly immunogenic tumor and recent developments in immunotherapies are promising. IFN-gamma produced by immune cells has a crucial role in tumor immune surveillance; however, it has also been reported to be pro-tumorigenic. In the current study, we found that IFN-gamma
enhances the expression of CD74, which interacts with its ligand, macrophage migration inhibitory factor (MIF), and thereby activates the PI3K/AKT pathway in melanoma, promoting tumor survival. IFN-gamma increased phosphorylation of AKT Ser473 and upregulated total cell surface expression of CD74 in human melanoma cell lines tested. CD74 was highly expressed in melanoma tissues. Moreover, the expression of CD74 on tumor cells correlated with plasma IFN-gamma levels in melanoma patient samples. In our analysis of melanoma cell lines, all produced MIF constitutively. Blockade of CD74-MIF interaction reduced AKT phosphorylation and expression of pro-tumorigenic molecules, including IL-6, IL-8, and BCL-2. Inhibition of CD74-MIF interaction significantly suppressed tumor growth in the presence of IFN-gamma in our xenograft mouse model. Thus, we conclude that IFN-gamma promotes melanoma cell survival by regulating CD74-MIF signaling, suggesting that targeting the CD74-MIF interaction under IFN-gamma-stimulatory conditions would be an effective therapeutic approach for melanoma.
Cabezudo E, etal., Haematologica. 1999 May;84(5):413-8.
BACKGROUND AND OBJECTIVE: Distinction between B-cell chronic leukemias can be difficult due to overlap in cell morphology and immunologic features. We investigated, by quantitative flow cytometry, the expression of CD79b, CD5 and CD19 in cells from a variety of
B-cell disorders to see whether this analysis adds further information useful to the diagnosis and characterization of these diseases. DESIGN AND METHODS: Peripheral blood cells from 6 normal individuals were used as reference controls. The diseases of the 63 patients investigated comprised: 29 chronic lymphocytic leukemia (CLL), six of them with atypical morphology, 6 B-cell prolymphocytic leukemia (PLL), 12 splenic lymphoma with villous lymphocytes (SLVL) and 16 mantle-cell (Mc) lymphoma in leukemic phase. The study was carried out by triple immunostaining with directly conjugated monoclonal antibodies (MoAb) against CD79b, CD5 and CD19 and quantitative estimation of the antigens per cell assessed with standard microbeads (Quantum Simply Cellular). RESULTS: Compared to normal B-cells, the number of CD19 molecules was significantly lower in cells from all of the B-cell disorders except PLL. The intensity of CD5 in leukemic B-cells was significantly higher in CLL cells, including atypical cases, and Mc lymphoma than in normal B-cells, whilst PLL and SLVL had values similar to those of normal B-lymphocytes. CD79b was expressed at lower levels in all types of leukemic cells compared to normal B-lymphocytes but differences were statistically significant in CLL, Mc lymphoma and SLVL. The number of CD79b molecules per cell was significantly lower in typical CLL than in the remaining B-cell diseases whilst the comparison of CD5 and CD19 intensity between CLL and non-CLL samples failed to show any statistically significant difference. INTERPRETATION AND CONCLUSIONS: Distinct antigen density patterns for the various conditions emerged from this analysis: Typical CLL was characterized by moderate CD5 and weak or negative CD79b expression. Mc lymphoma showed an homogeneous pattern, characterized by similar expression of CD5 than CLL but significantly stronger expression of CD79b whilst PLL and SLVL had weak CD5 and moderate CD79b expression. Atypical CLL had an intermediate pattern of CD79b antigen expression ranging from weak to moderate with bright CD5. Unlike CD5 and CD79b, CD19 did not discriminate the various B-cell disorders but only between normal and leukemic cells.
Wang Y, etal., Am J Med Genet. 2002 Apr 1;108(4):333-6. doi: 10.1002/ajmg.10296.
Mutations that impair early B cell development result in profound antibody deficiency, which is characterized by a paucity of mature B cells and the early onset of recurrent pyogenic infections. Among these inherited early B cell defects, X-linked agammaglobulinemia (XLA) with mutations in Bruton's
tyrosine kinase (BTK) gene is mostly identified. Recent studies have shown that mutations in the gene for mu heavy chain (IGHM) and for other components of the pre-B cell receptor complex, including lambda5/14.1 (IGLL1) or Igalpha (CD79a), can cause a disorder that is clinically similar to XLA. In a genetic survey of XLA in Turkey, we examined possible mutations in the IGHM, IGLL1, and Igalpha genes in some male patients with presumed XLA who did not have identifiable BTK mutations. We found an eight-year-old boy with a novel homozygous mutation in the Igalpha gene (IVS2+1G>A) causing B cell defect. This is the second case of agammaglobulinemia due to an Igalpha (CD79a) deficiency in the world.
Liu F, etal., Zhonghua Xue Ye Xue Za Zhi. 2016 Aug 14;37(8):696-701. doi: 10.3760/cma.j.issn.0253-2727.2016.08.013.
OBJECTIVE: To explore the influence of hypoxia-inducible factor-2 αlpha (HIF-2α) on the expression of erythroid-specific transcription factor GATA-1 in bone marrow CD71(+) cells of rat model with high altitude polycythemia (HAPC). ME
THODS: A total of 48 male SD rats were selected and randomly divided into normal control group and HAPC group. HAPC model was established at an altitude of 4 300 meters in the natural environment and verified by bone marrow cell classification and counting, hematologic parameters and serum EPO detection. Bone marrow CD71 (+) cells were separated by a combination of methods with density gradient centrifugation and magnetic activated cell sorting. The changes of expression level of HIF-2α, GATA-1 mRNA and proteins were detected by Q-PCR and Western blot. CD71 (+) cells were cultured under hypoxia condition and transfected with selected optimal HIF- 2α shRNAi3 for 96 h. And the expression level of HIF-2α and GATA-1 mRNA and proteins were detected by Q- PCR and Western blot. RESULTS: The results of bone marrow cell counts, the hematologic parameters and the serum EPO content showed that the HAPC rat model was successfully established. The expression of HIF-2α and GATA-1 mRNA and protein in bone marrow CD71(+) cells of HAPC group was higher than that in control group (P<0.05). And HIF-2α and GATA-1 of HAPC group were positively correlated at the expression levels of mRNA and protein, respectively (r=0.923, P<0.01; r=0.838, P<0.01). However, the expression of HIF-2α and GATA-1 mRNA and protein in HAPC group was significantly lower than that in control groups after interfered by HIF-2α shRNAi3 for 96 h (P<0.05). CONCLUSION: The effect of HIF-2α on GATA-1 expression may be correlated with the pathogenesis of HAPC.
Alfarano A, etal., Blood. 1999 Apr 1;93(7):2327-35.
Several functional anomalies of B-chronic lymphocytic leukemia (B-CLL) cells may be explained by abnormalities of the B-cell receptor (BCR), a multimeric complex formed by the sIg homodimer and the noncovalently bound heterodimer Igalpha/Igbeta (CD79a/CD7
e='font-weight:700;'>CD79b). Because the expression of the extracellular Ig-like domain of CD79b has been reported to be absent in the cells of most CLL cases, we have investigated the molecular mechanisms that may account for this defect. Peripheral blood lymphocytes (PBL) from 50 patients and two cell lines (MEC1, MEC2) obtained from the PBL of one of them were studied. MEC1, MEC2, and 75% of CLL cases did not express detectable levels of the extracellular Ig-like domain of CD79b, which was nevertheless present in greater than 80% CD19(+) cells from normal donors. In healthy subjects the expression of CD79b was equally distributed in CD5(+) and CD5(-) B-cell subsets. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of CD79b RNA from all patients and from MEC1 and MEC2 cell lines consistently yielded two fragments of different size (709 bp and 397 bp). The 709-bp band corresponds to CD79b entire transcript; the 397-bp band corresponds to an alternatively spliced form lacking exon 3 that encodes the extracellular Ig-like domain. Both fragments were also visible in normal PBL. The expression of the 397-bp fragment was increased in normal activated B cells, while no difference was seen between CD5(+) and CD5(-) B cells. To obtain a more accurate estimate of the relative proportions of the two spliced forms, a radioactive PCR was performed in 13 normal and 22 B-CLL samples and the results analyzed using a digital imager. The mean value of the CD79b to the CD79b internally deleted ratio was 0.64 +/- 0.20 SD in normal donors and 0.44 +/- 0.27 SD in B-CLL (P =.01). Direct sequencing of 397-bp RT-PCR products and of genomic DNA corresponding to exon 3 from MEC1, MEC2, their parental cells, and five fresh B-CLL samples did not show any causal mutation. Single-strand conformation polymorphism analysis of exon 3 performed in 18 additional B-CLL cases showed a single abnormal shift corresponding to a TGT --> TGC polymorphic change at amino acid 122. We propose a role for the alternative splicing of CD79b gene in causing the reduced expression of BCR on the surface of B-CLL cells. As normal B cells also present this variant, the mechanism of CD79b posttranscriptional regulation might reflect the activation stage of the normal B cell from which B-CLL derives.
Pfeifer M, etal., Leukemia. 2015 Jul;29(7):1578-86. doi: 10.1038/leu.2015.48. Epub 2015 Feb 24.
Antibody drug conjugates (ADCs), in which cytotoxic drugs are linked to antibodies targeting antigens on tumor cells, represent promising novel agents for the treatment of malignant lymphomas. Pinatuzumab vedotin is an anti-CD22 ADC and polatuzumab vedotin an anti-CD7
/span>9B ADC that are both linked to the microtubule-disrupting agent monomethyl auristatin E (MMAE). In the present study, we analyzed the activity of these agents in different molecular subtypes of diffuse large B-cell lymphoma (DLBCL) both in vitro and in early clinical trials. Both anti-CD22-MMAE and anti-CD79B-MMAE were highly active and induced cell death in the vast majority of activated B-cell-like (ABC) and germinal center B-cell-like (GCB) DLBCL cell lines. Similarly, both agents induced cytotoxicity in models with and without mutations in the signaling molecule CD79B. In line with these observations, relapsed and refractory DLBCL patients of both subtypes responded to these agents. Importantly, a strong correlation between CD22 and CD79B expression in vitro and in vivo was not detectable, indicating that patients should not be excluded from anti-CD22-MMAE or anti-CD79B-MMAE treatment because of low target expression. In summary, these studies suggest that pinatuzumab vedotin and polatuzumab vedotin are active agents for the treatment of patients with different subtypes of DLBCL.
Wilkinson RD, etal., Oncotarget. 2015 Oct 6;6(30):29725-39. doi: 10.18632/oncotarget.5065.
Cathepsins S (CatS) has been implicated in numerous tumourigenic processes and here we document for the first time its involvement in CCL2 regulation within the tumour microenvironment. Analysis of syngeneic tumours highlighted reduced infiltrating macrophages in CatS depleted tumours. Interrogation
of tumours and serum revealed genetic ablation of CatS leads to the depletion of several pro-inflammatory chemokines, most notably, CCL2. This observation was validated in vitro, where shRNA depletion of CatS resulted in reduced CCL2 expression. This regulation is transcriptionally mediated, as evident from RT-PCR analysis and CCL2 promoter studies. We revealed that CatS regulation of CCL2 is modulated through CD74 (also known as the invariant chain), a known substrate of CatS and a mediator of NFkB activity. Furthermore, CatS and CCL2 show a strong clinical correlation in brain, breast and colon tumours. In summary, these results highlight a novel mechanism by which CatS controls CCL2, which may present a useful pharmacodynamic marker for CatS inhibition.
CD70-mediated stimulation of CD27 is an important cofactor of CD4(+) T-cell licensed dendritic cells (DCs). However, it is unclear how CD70-mediated stimulation of T cells is integrated with signals that emanate from signal
3 pathways, such as type-1 interferon (IFN-1) and IL-12. We find that while stimulation of CD27 in isolation drives weak Eomesodermin(hi) T-bet(lo) CD8(+) T-cell responses to OVA immunization, profound synergistic expansion is achieved by cotargeting TLR. This cooperativity can substantially boost antiviral CD8(+) T-cell responses during acute infection. Concomitant stimulation of TLR significantly increases per cell IFN-gamma production and the proportion of the population with characteristics of short-lived effector cells, yet also promotes the ability to form long-lived memory. Notably, while IFN-1 contributes to the expression of CD70 on DCs, the synergy between CD27 and TLR stimulation is dependent upon IFN-1's effect directly on CD8(+) T cells, and is associated with the increased expression of T-bet in T cells. Surprisingly, we find that IL-12 fails to synergize with CD27 stimulation to promote CD8(+) T-cell expansion, despite its capacity to drive effector CD8(+) T-cell differentiation. Together, these data identify complex interactions between signal 3 and costimulatory pathways, and identify opportunities to influence the differentiation of CD8(+) T-cell responses.
Itani HA, etal., Circ Res. 2016 Apr 15;118(8):1233-43. doi: 10.1161/CIRCRESAHA.115.308111. Epub 2016 Mar 17.
RATIONALE: Accumulating evidence supports a role of adaptive immunity and particularly T cells in the pathogenesis of hypertension. Formation of memory T cells, which requires the costimulatory molecule CD70 on antigen-presenting cells, is a cardinal feature of
adaptive immunity. OBJECTIVE: To test the hypothesis that CD70 and immunologic memory contribute to the blood pressure elevation and renal dysfunction mediated by repeated hypertensive challenges. METHODS AND RESULTS: We imposed repeated hypertensive challenges using either N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME)/high salt or repeated angiotensin II stimulation in mice. During these challenges effector memory T cells (T(EM)) accumulated in the kidney and bone marrow. In the L-NAME/high-salt model, memory T cells of the kidney were predominant sources of interferon-gamma and interleukin-17A, known to contribute to hypertension. L-NAME/high salt increased macrophage and dendritic cell surface expression of CD70 by 3- to 5-fold. Mice lacking CD70 did not accumulate T(EM) cells and did not develop hypertension to either high salt or the second angiotensin II challenge and were protected against renal damage. Bone marrow-residing T(EM) cells proliferated and redistributed to the kidney in response to repeated salt feeding. Adoptively transferred T(EM) cells from hypertensive mice homed to the bone marrow and spleen and expanded on salt feeding of the recipient mice. CONCLUSIONS: Our findings illustrate a previously undefined role of CD70 and long-lived T(EM) cells in the development of blood pressure elevation and end-organ damage that occur on delayed exposure to mild hypertensive stimuli. Interventions to prevent repeated hypertensive surges could attenuate formation of hypertension-specific T(EM) cells.
O'Brien WG 3rd, etal., Sci Rep. 2015 Aug 7;5:13147. doi: 10.1038/srep13147.
Erythrocytes are the key target in 5'-AMP induced hypometabolism. To understand how regulation of endogenous erythrocyte AMP levels modulates systemic metabolism, we generated mice deficient in both CD73 and AMPD3, the key catabolic enzymes for extracellular and
intra-erythrocyte AMP, respectively. Under physiological conditions, these mice displayed enhanced capacity for physical activity accompanied by significantly higher food and oxygen consumption, compared to wild type mice. Erythrocytes from Ampd3(-/-) mice exhibited higher half-saturation pressure of oxygen (p50) and about 3-fold higher levels of ATP and ADP, while they maintained normal 2,3-bisphosphoglycerate (2,3-BPG), methemoglobin levels and intracellular pH. The affinity of mammalian hemoglobin for oxygen is thought to be regulated primarily by 2,3-BPG levels and pH (the Bohr effect). However, our results show that increased endogenous levels of ATP and ADP, but not AMP, directly increase the p50 value of hemoglobin. Additionally, the rise in erythrocyte p50 directly correlates with an enhanced capability of systemic metabolism.
gammadelta T cells can either enhance or inhibit an adaptive immune response, but the mechanisms involved are not fully understood. Given that CD73 is the main enzyme responsible for conversion of AMP into the immunosuppressive molecule adenosine, we investigate
d its role in the regulatory function of gammadelta T cells in experimental autoimmune uveitis (EAU). We found that gammadelta T cells expressed different amounts of CD73 during the different stages of EAU and that low CD73 expression on gammadelta T cells correlated with enhanced Th17 response-promoting activity. Functional comparison of CD73-deficient and wild-type B6 (CD73+/+) mice showed that failure to express CD73 decreased both the enhancing and suppressive effects of gammadelta T cells on EAU. We also demonstrated that gammadelta T cells expressed different amounts of CD73 when activated by different pathways, which enabled them to either enhance or inhibit an adaptive immune response. Our results demonstrate that targeting CD73 expression on gammadelta T cells may allow us to manipulate their pro- or anti-inflammatory effect on Th17 responses.
CD73 is intensively involved in the regulation of immune responses through the conversion of pro-inflammatory ATP to immunosuppressive adenosine. Herein, we clarified whether cells in the retina express CD73 and participate
in the regulation of inflammatory eye diseases such as experimental autoimmune uveitis (EAU). First, immunofluorescence staining was performed to compare the distribution of CD73(+) cells in the retinas of EAU-induced and normal B10RIII mice. The results revealed that a layer of cells in the normal retina that was consistent with the location of retinal pigment epithelial (RPE) cells strongly expressing CD73, and the expression was markedly reduced in the presence of EAU. Thereafter, EAU was also induced in C57BL/6 mice by active immunization or adoptive transfer. CD73 expression in isolated RPE cells was assessed by real-time RT-PCR and western blotting, and the catalytic abilities of the cells to convert AMP to adenosine were determined using HPLC analyses. Compared to the normal control, significantly decreased CD73 expression and AMP catalytic ability were found in the RPE cells isolated from inflamed eyes. CD73 expression and activity were also studied in cultured RPE cells treated with different stimuli, such as Toll-like receptor ligands and cytokines. Highly varied functional CD73 expression was observed in RPE cells through cytokines or Toll-like receptor agonist treatments. Finally, whether RPE cells could regulate the immune response, particularly the proliferation of CD4 cells, through surface-expressed CD73 was determined using a two-chamber assay. The robust inhibition of conventional T-cell proliferation was uniquely observed when CD73(+) RPE cells in the upper chamber were in the presence of AMP. To further confirm the function of CD73 in RPE cells, Cd73(-/-) RPE cells were isolated, and CD73-rescued control cells were constructed. CD73(+)Cd73(-/-) RPE, not Cd73(-/-) RPE, significantly suppressed interacted CD4 cells proliferation and cytokine production. Taken together, these data suggest that naive RPE cells suppressed the immune response through their high expression of CD73. The expression of CD73 in RPE cells could be regulated through many factors, and down-regulated CD73 expression attenuated the suppressive effect of RPE on the proliferation of conventional CD4 cells.
CD73 catalyzes the conversion of extracellular nucleosides to adenosine, modulating inflammatory and T cell responses. Elevated expression of CD73 marks subpopulations of murine memory B cells (MBC), but its role in memory d
evelopment or function is unknown. Here, we demonstrate that CD73 is progressively upregulated on germinal center (GC) B cells following immunization, is expressed at even higher levels among T follicular helper cells, but is absent among plasma cells (PC) and plasmablasts (PB). We analyzed the T-dependent B cell response in CD73 knockout mice (CD73KO). During the early response, CD73KO and wild type (WT) mice formed GCs, MBCs and splenic PBs and PCs similarly, and MBCs functioned similarly in the early secondary response. Late in the primary response, however, bone marrow (BM) PCs were markedly decreased in CD73KO animals. Tracking this phenotype, we found that CD73 expression was required on BM-derived cells for optimal BM PC responses. However, deletion of CD73 from either B or T lymphocytes alone did not recapitulate the phenotype. This suggests that CD73 expression is sufficient on either cell type, consistent with its function as an ectoenzyme. Together, these findings suggest that CD73-dependent adenosine signaling is prominent in the mature GC and required for establishment of the long-lived PC compartment, thus identifying a novel role for CD73 in humoral immunity.
Koszalka P, etal., Int J Biochem Cell Biol. 2015 Dec;69:1-10. doi: 10.1016/j.biocel.2015.10.003. Epub 2015 Oct 13.
Ecto-5'-nucleotidase (CD73), an enzyme providing interstitial adenosine, mediates diverse physiological and pathological responses. In tumor progression, it has primarily an immunosuppressive role but is also thought to regulate neovascularization. However, the
latter role is still in debate. When B16F10 melanoma was subcutaneously injected into CD73 knockout mice, changes in the tumor vasculature were not always observed. However, we demonstrated earlier that the growth and vascularization of B16F10 melanoma in CD73 knockout mice depend on the low presence of CD73 on tumor cells. To further analyze the role of CD73 on tumor growth and vascularization, we compared the changes in B16F10 melanoma subcutaneously injected into right flank of wild-type mice, CD73 knockout mice lacking host CD73 only, and CD73 knockout mice with tumor cell CD73 either inhibited with AOPCP (adenosine alpha,beta-methylene 5'-diphosphate) or permanently knocked down through genetic modification. We report here that both inhibition and knockdown of tumor CD73 further inhibited tumor growth compared to host CD73 knockout alone. MAP-kinase signaling pathway activation also decreased more strongly in the stable knockdown. There was a significant reduction in the angiogenic activation of blood microvessels as observed by decreased anti-VEGFR2 staining. Stable CD73 knockdown also reduced endothelial cell proliferation as measured by anti-CD105 staining. However, only chemical inhibition with AOPCP significantly augmented the reduction in intratumoral microvessel density induced by host CD73 knockout. Such reduction was not observed when tumor CD73 was knocked down due to the much slower tumor growth and decreased oxygen demand as indicated by the low expression of Bad, a hypoxia marker. Decreased CD73 activity also led to the decreased expression of angiogenic factors, including VEGF and bFGF that was only partially reversed by hypoxia in tumors treated with AOPCP. Both inhibition and knockdown of tumor CD73 significantly decreased tumor macrophage infiltration and induced microenvironment changes, thereby influencing MI or MII macrophage polarization. Additionally, tumor cell CD73 is important in metastasis formation through adenosine-independent attachment to endothelium. We conclude that even low tumor cell CD73 expression has an undeniable role in melanoma progression, including the regulation of many aspects of angiogenesis. CD73 is thus a viable target in anti-angiogenic melanoma therapy.
Chen X, etal., Stem Cells Dev. 2016 Feb 15;25(4):337-46. doi: 10.1089/scd.2015.0227. Epub 2016 Jan 29.
Mesenchymal stem cells (MSCs) exhibit a potent immunomodulatory capacity and have been applied to treat diseases such as graft versus host disease and severe autoimmune diseases. However, the mechanism underlying their immunosuppressive effect is not yet completely understood. Here, we investigated
the role of the CD73/adenosine pathway in immune modulation by MSCs using a mouse model of experimental autoimmune uveitis (EAU). Moreover, we examined the in vitro modulatory effect of MSCs mediated through the CD73/adenosine pathway in human and mouse T cells. We found that the severity of EAU was significantly attenuated by MSCs; however, most therapeutic effects of MSCs were lost by pretreatment with a CD73 inhibitor. The inhibitory mechanism of MSCs might be contributed by CD73 on MSCs that cooperated with CD39 and CD73 on activated T cells to produce adenosine, resulting in inhibition of T-cell proliferation. Furthermore, MSCs increased the expression of CD73 on CD4(+) T cells, and transforming growth factor-beta1 (TGF-beta1) was the only tested cytokine that contributed to upregulation of CD73. Hence, our study demonstrates that the CD73/adenosine pathway involves the immunomodulatory function of MSCs in autoimmune responses.
Yang J, etal., IUBMB Life. 2015 Nov;67(11):853-60. doi: 10.1002/iub.1448. Epub 2015 Oct 27.
Extracellular adenosine, generated by ecto-5'-nucleotidase (CD73) via enzymatic catalyzation, has been found to facilitate atherosclerosis (AS). Thus, suppressing CD73 may attenuate AS. In this study, we evaluated the role o
f CD73 during AS development and further explored cellular and molecular mechanism in smooth muscle cells (SMCs). In a mouse model of carotid artery ligation, inactivation of CD73 inhibited migration and proliferation of vascular SMCs. In in vitro experiments, RNA interference of CD73 inhibited migration, proliferation, and foam cell transformation of human umbilical artery smooth muscle cells. Further, we established an atherosclerotic model using ApoE-/- mice fed with a western diet for 16 weeks. Inactivation of CD73-attenuated AS and hyperlipidemia in ApoE-/- mice. In conclusion, our data suggest that CD73 facilitates AS by promoting migration, proliferation, and foam cell transformation of vascular SMCs and elevating serum lipid levels. Thus, inhibition of CD73 may be beneficial for prevention and treatment of AS.
The surface expression of CD79b, using the monoclonal antibody (Mab) CB3-1, on B lymphocytes from normal individuals and patients with B cell chronic lymphocytic leukemia (CLL) has been analyzed using triple-staining cells for flow cytometry. In addition, the cl
inical significance of CD79b expression in CLL patients and its possible value for the evaluation of minimal residual disease (MRD) was explored. A total of 15 peripheral blood (PB) samples from healthy blood donors, five bone marrow (BM) samples from normal donors and 40 PB samples from CLL untreated patients were included in the study. In addition we studied the expression of CD79b in B lymphocytes from five CLL patients after fludarabine treatment in order to support our method. The expression of CD79b in B lymphocytes from PB was analyzed by flow cytometry, using simultaneous staining with the Mabs CD22, CD79b, CD19 and CD5, CD79b and CD19. Since normal immature bone marrow B cells are CD79b-/dim+ on their surface, in BM samples we used the combination CD45, CD79b and CD19 selecting mature B lymphocytes according to their bright CD45 intensity. Cell acquisition was performed in two consecutive steps using a live gate drawn on SSC/CD19+ cells. For data analysis, the PAINT-A-GATE PRO software (Becton Dickinson) was used. Dilution experiments of CD79b- CLL cells and CD79bdim+ CLL cells with normal PB and BM cells were performed in order to assess the sensitivity level of the technique for detection of CD79b-/dim+residual CLL cells. All B lymphocytes from normal samples showed reactivity for the CD79b antigen. In contrast, CD79b was absent in 18/40 CLL patients (42.5%) and 20/40 CLL cases (50%) exhibited a low CD79b expression. Therefore, CD79b- B lymphocytes would be restricted to the CLL population and thus could be considered a 'tumor phenotype' for monitoring MRD in CLL patients. Dilution experiments indicate that the detection limit with this marker almost reaches the levels obtained by molecular biology methods as the PCR technique. All cases studied after fludarabine presented leukemic cells in their PB or BM samples detected by flow cytometry. Upon comparing the clinical and morphological characteristics of CD79b- and CD79b+ cases, all atypical CLL cases included in the present study were CD79b+ and advanced clinical stage (B and C Binet stage) was most frequently observed in CD79b+ cases than in CD79b- cases.
Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATL). Miscellaneous host immune surveillance systems control T-cell growth/leukemogenesis during HTLV-1 infection. We characterized CD70 and CD27 expression on l
ymphocytes of HTLV-1 carriers and patients with ATL (study approved by the local Medical Ethical Committee). High CD70 expression was observed on CD4 + CD25+ T cells from patients with acute-type ATL, while patients with smoldering- or chronic-type ATL and HTLV-1 carriers exhibited lower expression. Furthermore, significantly higher CD27 expression was observed on HTLV-1-specific CTLs. We found an association between CD70 expression on CD4 + T cells and HTLV-1 infection; increased CD70 expression was observed after exposure to Tax. Moreover, addition of anti-CD70 antibodies enhanced the CD107a surface mobilization of HTLV-1 Tax-specific CTLs following Tax-peptide stimulation in the PBMCs of carriers. These data demonstrate the important role of the CD70/CD27 axis in immune responses in HTLV-1 carriers and ATL patients.
Nagel D, etal., Oncotarget. 2015 Dec 8;6(39):42232-42. doi: 10.18632/oncotarget.6273.
Survival of activated B cell-subtype (ABC) of diffuse large B cell lymphoma (DLBCL) is driven by chronic B cell receptor (BCR) signaling that activates the canonical NF-kappaB pathway. Inhibition of BTK by Ibrutinib has been shown to kill ABC DLBCL cells that carry activating mutations in the BCR ad
aptor CD79. However, mutations in BTK or in downstream components such as CARMA1/CARD11 can render lymphomas Ibrutinib resistant. Therefore, we assessed here the simultaneous inhibition of BTK and the protease MALT1 that acts downstream of CARMA1 and is essential for ABC DLBCL tumor growth. We show that in CD79 mutant cells BTK is a crucial upstream regulator of MALT1, but dispensable in CARMA1 mutant ABC DLBCL. Combined inhibition of BTK by Ibrutinib and MALT1 by S-Mepazine additively impaired MALT1 cleavage activity and expression of NF-kappaB pro-survival factors. Thereby, combinatorial Ibrutinib and S-Mepazine treatment enhanced killing of CD79 mutant ABC DLBCL cells. Moreover, while expression of oncogenic CARMA1 in CD79 mutant cells conferred Ibrutinib resistance, double mutant cells were still sensitive to MALT1 inhibition by S-Mepazine. Thus, based on the genetic background combinatorial BTK and MALT1 inhibition may improve effectiveness of therapeutic treatment and reduce the chances for the development of drug resistances.
In this study, we describe four patients from two unrelated families of different ethnicities with a primary immunodeficiency, predominantly manifesting as susceptibility to Epstein-Barr virus (EBV)-related diseases. Three patients presented with EBV-associated Hodgkin's lymphoma and hypogammaglobul
inemia; one also had severe varicella infection. The fourth had viral encephalitis during infancy. Homozygous frameshift or in-frame deletions in CD70 in these patients abolished either CD70 surface expression or binding to its cognate receptor CD27. Blood lymphocyte numbers were normal, but the proportions of memory B cells and EBV-specific effector memory CD8+ T cells were reduced. Furthermore, although T cell proliferation was normal, in vitro-generated EBV-specific cytotoxic T cell activity was reduced because of CD70 deficiency. This reflected impaired activation by, rather than effects during killing of, EBV-transformed B cells. Notably, expression of 2B4 and NKG2D, receptors implicated in controlling EBV infection, on memory CD8+ T cells from CD70-deficient individuals was reduced, consistent with their impaired killing of EBV-infected cells. Thus, autosomal recessive CD70 deficiency is a novel cause of combined immunodeficiency and EBV-associated diseases, reminiscent of inherited CD27 deficiency. Overall, human CD70-CD27 interactions therefore play a nonredundant role in T and B cell-mediated immunity, especially for protection against EBV and humoral immunity.
Dobbs AK, etal., J Immunol. 2007 Aug 15;179(4):2055-9. doi: 10.4049/jimmunol.179.4.2055.
Although null mutations in Igalpha have been identified in patients with defects in B cell development, no mutations in Igbeta have been reported. We recently identified a patient with a homozygous amino acid substitution in Igbeta, a glycine to serine at codon 137, adjacent to the cysteine required
for the disulfide bond between Igalpha and Igbeta. This patient has a small percentage of surface IgM(dim) B cells in the peripheral circulation (0.08% compared with 5-20% in healthy controls). Using expression vectors in 293T cells or Jurkat T cells, we show that the mutant Igbeta can form disulfide-linked complexes and bring the mu H chain to the cell surface as part of the BCR but is inefficient at both tasks. The results show that minor changes in the ability of the Igalpha/Igbeta complex to bring the BCR to the cell surface have profound effects on B cell development.
Mun SH, etal., J Bone Miner Res. 2013 Apr;28(4):948-59. doi: 10.1002/jbmr.1787.
CD74 is a type II transmembrane protein that can act as a receptor for macrophage migration inhibitory factor (MIF) and plays a role in MIF-regulated responses. We reported that MIF inhibited osteoclast formation and MIF knockout (KO) mice had decreased bone mas
s. We therefore examined if CD74 was involved in the ability of MIF to alter osteoclastogenesis in cultured bone marrow (BM) from wild-type (WT) and CD74-deficient (KO) male mice. We also measured the bone phenotype of CD74 KO male mice. Bone mass in the femur of 8-week-old mice was measured by micro-computed tomography and histomorphometry. Bone marrow cells from CD74 KO mice formed 15% more osteoclast-like cells (OCLs) with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL) (both at 30 ng/mL) compared to WT. Addition of MIF to WT cultures inhibited OCL formation by 16% but had no effect on CD74KO cultures. The number of colony forming unit granulocyte-macrophage (CFU-GM) in the bone marrow of CD74 KO mice was 26% greater than in WT controls. Trabecular bone volume (TBV) in the femurs of CD74 KO male mice was decreased by 26% compared to WT. In addition, cortical area and thickness were decreased by 14% and 11%, respectively. Histomorphometric analysis demonstrated that tartrate-resistant acid phosphatase (TRAP)(+) osteoclast number and area were significantly increased in CD74 KO by 35% and 43%, respectively compared to WT. Finally, we examined the effect of MIF on RANKL-induced-signaling pathways in bone marrow macrophage (BMM) cultures. MIF treatment decreased RANKL-induced nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) and c-Fos protein in BMM cultures by 70% and 41%, respectively. Our data demonstrate that CD74 is required for MIF to affect in vitro osteoclastogenesis. Further, the bone phenotype of CD74 KO mice is similar to that of MIF KO mice. MIF treatment of WT cultures suppressed RANKL-induced activator protein 1 (AP-1) expression, which resulted in decreased osteoclast differentiation in vitro. We propose that CD74 plays a critical role in the MIF inhibition of osteoclastogenesis.
Aeffner F, etal., Am J Physiol Lung Cell Mol Physiol. 2015 Dec 1;309(11):L1313-22. doi: 10.1152/ajplung.00130.2015. Epub 2015 Oct 2.
Extracellular nucleotides and nucleosides are important signaling molecules in the lung. Nucleotide and nucleoside concentrations in alveolar lining fluid are controlled by a complex network of surface ectonucleotidases. Previously, we demonstrated that influenza A/WSN/33 (H1N1) virus resulted in in
creased levels of the nucleotide ATP and the nucleoside adenosine in bronchoalveolar lavage fluid (BALF) of wild-type (WT) C57BL/6 mice. Influenza-induced acute lung injury (ALI) was highly attenuated in A1-adenosine receptor-knockout mice. Because AMP hydrolysis by the ecto-5'-nucleotidase (CD73) plays a central role in and is rate-limiting for generation of adenosine in the normal lung, we hypothesized that ALI would be attenuated in C57BL/6-congenic CD73-knockout (CD73-KO) mice. Infection-induced hypoxemia, bradycardia, viral replication, and bronchoconstriction were moderately increased in CD73-KO mice relative to WT controls. However, postinfection weight loss, pulmonary edema, and parenchymal dysfunction were not altered. Treatment of WT mice with the CD73 inhibitor 5'-(alpha,beta-methylene) diphosphate (APCP) also had no effect on infection-induced pulmonary edema but modestly attenuated hypoxemia. BALF from CD73-KO and APCP-treated WT mice contained more IL-6 and CXCL-10/IFN-gamma-induced protein 10, less CXCL-1/keratinocyte chemoattractant, and fewer neutrophils than BALF from untreated WT controls. BALF from APCP-treated WT mice also contained fewer alveolar macrophages and more transforming growth factor-beta than BALF from untreated WT mice. These results indicate that CD73 is not necessary for development of ALI following influenza A virus infection and suggest that tissue-nonspecific alkaline phosphatase may be responsible for increased adenosine generation in the infected lung. However, they do suggest that CD73 has a previously unrecognized immunomodulatory role in influenza.
Regulatory T cells have various mechanisms to suppress the inflammatory response, among these, the modulation of the microenvironment through adenosine and with the participation of CD39, CD73 and A2A. The aim of this study was to assess the expression of CD7
style='font-weight:700;'>CD73 and A2A in immune cells and the effect of activation of A2A by an adenosine analogue on apoptosis in patients with obesity and type 2 diabetes mellitus (T2D). CD73 and A2A expression were analyzed by flow cytometry in lymphocyte subpopulations from patients with obesity (n = 22), T2D (n = 22), and healthy subjects (n = 20). Lymphocytes were treated with the selective A2A antagonist (ZM241385) or the selective A2A agonist (CGS21680), and apoptotic cells were detected by Annexin V. We found an increased expression of CD39 coupled to a decrease in CD73 in the patient groups with obesity and T2D compared to the control group in the different studied lymphocyte subpopulations. A2A expression was found to be increased in different subpopulations of lymphocytes from T2D patients. We also detected positive correlations between CD39+ cells and age and BMI. Meanwhile, CD73+ cells showed negative correlations with age, WHR, BMI, FPG, HbAc1, triglycerides and cholesterol. Moreover, an increase in the percentage of apoptotic cells from T2D patients with regard to the groups with obesity and control was observed. In addition, the CD8+ T cells of patients with T2D exhibited decreased apoptosis when treated with the A2A agonist. In conclusion, our data suggest a possible role for CD73 and A2A in inflammation observed in patients with T2D and obesity mediated via apoptosis.
Rassenti LZ and Kipps TJ, Blood. 2000 Apr 15;95(8):2725-7.
Because immunoglobulin (Ig)-beta (CD79b) is required for immunoglobulin allelic exclusion, we examined the CD79b expressed by four chronic lymphocytic leukemia (CLL) samples that expressed more than one immunoglobulin heavy-
chain allele and five samples that had normal immunoglobulin heavy-chain allelic exclusion. All leukemia cell samples stained poorly with monoclonal antibodies specific for extracellular epitopes of CD79b. However, all samples expressed functional CD79b genes, regardless of whether they did or did not express more than one immunoglobulin heavy-chain allele. We identified variant CD79b genes that had conservative base substitutions restricted to regions encoding the extracellular immunoglobulin-like domain of CD79b. However, these variants were not restricted to samples lacking immunoglobulin heavy-chain allelic exclusion and most likely reflect genetic polymorphism. Collectively, these data indicate that the unusual expression of more than one immunoglobulin heavy allele by CLL B cells is not associated with structural, nonconservative mutations in the signal-transduction domains of CD79b. (Blood. 2000;95:2725-2727)
BACKGROUND: Adenosine is a powerful trigger for ischemic preconditioning (IPC). Myocardial ischemia induces intracellular and extracellular ATP degradation to adenosine, which then activates adenosine receptors and elicits cardioprotection. Conventionally extracellular adenosine formation by ecto-5'
-nucleotidase (CD73) during ischemia was thought to be negligible compared to the massive intracellular production, but controversial reports in the past demand further evaluation. In this study we evaluated the relevance of ecto-5'-nucleotidase (CD73) for infarct size reduction by ischemic preconditioning in in vitro and in vivo mouse models of myocardial infarction, comparing CD73-/- and wild type (WT) mice. METHODS AND RESULTS: 3x5 minutes of IPC induced equal cardioprotection in isolated saline perfused hearts of wild type (WT) and CD73-/- mice, reducing control infarct sizes after 20 minutes of ischemia and 90 minutes of reperfusion from 46 +/- 6.3% (WT) and 56.1 +/- 7.6% (CD73-/-) to 26.8 +/- 4.7% (WT) and 25.6 +/- 4.7% (CD73-/-). Coronary venous adenosine levels measured after IPC stimuli by high-pressure liquid chromatography showed no differences between WT and CD73-/- hearts. Pharmacological preconditioning of WT hearts with adenosine, given at the measured venous concentration, was evenly cardioprotective as conventional IPC. In vivo, 4x5 minutes of IPC reduced control infarct sizes of 45.3 +/- 8.9% (WT) and 40.5 +/- 8% (CD73-/-) to 26.3 +/- 8% (WT) and 22.6 +/- 6.6% (CD73-/-) respectively, eliciting again equal cardioprotection. The extent of IPC-induced cardioprotection in male and female mice was identical. CONCLUSION: The infarct size limiting effects of IPC in the mouse heart in vitro and in vivo are not significantly affected by genetic inactivation of CD73. The ecto-5'-nucleotidase derived extracellular formation of adenosine does not contribute substantially to adenosine's well known cardioprotective effect in early phase ischemic preconditioning.
Wirsdorfer F, etal., Cancer Res. 2016 May 15;76(10):3045-56. doi: 10.1158/0008-5472.CAN-15-2310. Epub 2016 Feb 26.
Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD7
ont-weight:700;'>CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks postirradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately 3-fold. Histologic evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P < 0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacologic strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. Cancer Res; 76(10); 3045-56. (c)2016 AACR.
Maratheftis CI, etal., Am J Hematol. 2007 Oct;82(10):887-92.
GATA-1 is a transcription factor governing the production of erythroid and megakaryocytic cells. Unobstructed GATA-1 expression in early progenitor cells commits them to the myeloid lineage, channeling its differentiation towards erythrocytes and megakaryocytes. Myelodysplastic Syndromes (MDS) are c
lonal disorders of the hematopoietic stem cell frequently presenting dysplasia in erythroid and/or megakaryocytic lineage. We reasoned that measurement of GATA-1 expression levels in hematopoietic progenitor CD34(+) and the committed erythroid CD71(+) cells, from various MDS subcategories, could demonstrate GATA-1 involvement in the pathogenesis of the syndrome. In this study, MDS patients displayed significantly elevated GATA-1 mRNA expression, in bone marrow mononuclear cells (BMMCs), progenitor CD34(+) and erythroid CD71(+) cells in contrast to the control population (P < 0.001). Additionally, GATA-1 mRNA expression in MDS CD71(+) cells was positively correlated with their apoptotic levels (rho = 0.58, P = 0.03). Furthermore, GATA-1 expression levels were found to correlate with the disease progression. MDS patients in high/INT-2 IPSS risk group expressed significantly higher GATA-1 mRNA levels, in both CD34(+) and CD71(+) cells, as opposed to low/INT-1 patients (P < 0.001). Moreover, the former displayed increased apoptosis in the CD71(+) cells and significantly reduced neutrophil and platelet numbers and hemoglobin levels compared with the latter. We conclude that MDS patients display an increase of GATA-1 mRNA expression in BM cells, with high/INT-2 patients showing significantly higher levels. The higher level of GATA-1 mRNA in erythroid cells was positively correlated with their degree of apoptosis. These findings suggest that the up-regulation of GATA-1 may be responsible for the peripheral cytopenias in MDS.
Kaczmarek R, etal., Biochem Biophys Res Commun. 2016 Jan 29;470(1):168-74. doi: 10.1016/j.bbrc.2016.01.017. Epub 2016 Jan 7.
Human Gb3/CD77 synthase (alpha1,4-galactosyltransferase, P(k) synthase), encoded by A4GALT gene, is known for synthesis of Gal(alpha1-4)Gal moiety in globotriaosylceramide (Gb3Cer, CD77, P(k) blood group antigen), a glycosp
hingolipid of the globo series. Recently, it was shown that c.631C > G mutation in A4GALT, which causes p.Q211E substitution in the open reading frame of the enzyme, broadens the enzyme specificity, making it able also to synthesize Gal(alpha1-4)GalNAc moiety, which constitutes the defining terminal disaccharide of the NOR antigen (carried by two glycosphingolipids: NOR1 and NOR2). Terminal Gal(alpha1-4)Gal disaccharide is also present in another glycosphingolipid blood group antigen, called P1, which together with P(k) and NOR comprises the P1PK blood group system. Despite several attempts, it was never clearly shown that P1 antigen is synthesized by Gb3/CD77 synthase, leaving open an alternative hypothesis that there are two homologous alpha1,4-galactosyltransferases in humans. In this study, using recombinant Gb3/CD77 synthase produced in insect cells, we show that the consensus enzyme synthesizes both the P(k) and P1 antigens, while its p.Q211E variant additionally synthesizes the NOR antigen. This is the first direct biochemical evidence that Gb3/CD77 synthase is able to synthesize two different glycosphingolipid antigens: P(k) and P1, and when p.Q211E substitution is present, the NOR antigen is also synthesized.
Oyarzun C, etal., Biochem Biophys Res Commun. 2015 Dec 4-11;468(1-2):354-9. doi: 10.1016/j.bbrc.2015.10.095. Epub 2015 Oct 21.
The pathogenesis of diabetic nephropathy (DN) has not been clearly established, making diagnosis and patient management difficult. Recent studies using experimental diabetic models have implicated adenosine signaling with renal cells dysfunction. Therefore, the study of the biochemical mechanisms th
at regulate extracellular adenosine availability during DN is of emerging interest. Using streptozotocin-induced diabetic rats we demonstrated that urinary levels of adenosine were early increased. Further analyses showed an increased expression of the ecto 5'-nucleotidase (CD73), which hydrolyzes AMP to adenosine, at the renal proximal tubules and a higher enzymatic activity in tubule extracts. These changes precede the signs of diabetic kidney injury recognized by significant proteinuria, morphological alterations and the presence of the renal fibrosis markers alpha smooth muscle actin and fibronectin, collagen deposits and thickening of the glomerular basement membrane. In the proximal tubule cell line HK2 we identified TGF-beta as a key modulator of CD73 activity. Importantly, the increased activity of CD73 could be screened in urinary sediments from diabetic rats. In conclusion, the increase of CD73 activity is a key component in the production of high levels of adenosine and emerges as a new tool for the early diagnosis of tubular injury in diabetic kidney disease.
INTRODUCTION: B cell receptor (BCR) -mediated signals are enhanced when CD72 expression is deficient on B cells in autoimmune diseases. The significance of soluble CD72 (sCD72) has not b
een elucidated. METHODS: Soluble CD72 was analyzed in the serum of 159 SLE patients, 40 rheumatoid arthritis (RA) patients, and 100 healthy individuals. Correlations between sCD72 and SLE disease activity (SLEDAI) were assessed. RESULTS: Soluble CD72 was found increased in SLE patients, when compared to both RA patients and healthy individuals (20.2 +/- 1.2 ng/ml; 10.6 +/- 4.6 ng/ml and 7.2 +/- 3.3 ng/ml; p < 0.001). Soluble CD72 level was significantly higher in SLE patients with renal involvement than in patients without (31.8 +/- 2.3 ng/ml vs 13.9 +/- 0.9 ng/ml; p < 0.001) and also with the presence of auto-antibodies. CONCLUSION: Soluble CD72 is significantly increased in SLE patients mainly in those with renal involvement. Increased sCD72 may become a potential biomarker for renal involvement in SLE.
Epstein-Barr virus (EBV) infection in humans is a major trigger of malignant and nonmalignant B cell proliferations. CD27 is a co-stimulatory molecule of T cells, and inherited CD27 deficiency is characterized by high susceptibility to EBV infection, though the underlying pathological mechanisms hav
e not yet been identified. In this study, we report a patient suffering from recurrent EBV-induced B cell proliferations including Hodgkin's lymphoma because of a deficiency in CD70, the ligand of CD27. We show that EBV-specific T lymphocytes did not expand properly when stimulated with CD70-deficient EBV-infected B cells, whereas expression of CD70 in B cells restored expansion, indicating that CD70 on B cells but not on T cells is required for efficient proliferation of T cells. CD70 was found to be up-regulated on B cells when activated and during EBV infection. The proliferation of T cells triggered by CD70-expressing B cells was dependent on CD27 and CD3 on T cells. Importantly, CD27-deficient T cells failed to proliferate when stimulated with CD70-expressing B cells. Thus, the CD70-CD27 pathway appears to be a crucial component of EBV-specific T cell immunity and more generally for the immune surveillance of B cells and may be a target for immunotherapy of B cell malignancies.
CD73 (ecto-5'-nucleotidase) has recently been established as a promising immuno-oncology target. Given its role in activating purinergic signaling pathways to elicit immune suppression, antagonizing CD73 (i.e., releasing the
brake) offers a complimentary pathway to inducing anti-tumor immune responses. Here, we describe the mechanistic activity of a new clinical therapeutic, MEDI9447, a human monoclonal antibody that non-competitively inhibits CD73 activity. Epitope mapping, structural, and mechanistic studies revealed that MEDI9447 antagonizes CD73 through dual mechanisms of inter-CD73 dimer crosslinking and/or steric blocking that prevent CD73 from adopting a catalytically active conformation. To our knowledge, this is the first report of an antibody that inhibits an enzyme's function through 2 distinct modes of action. These results provide a finely mapped epitope that can be targeted for selective, potent, and non-competitive inhibition of CD73, as well as establish a strategy for inhibiting enzymes that function in both membrane-bound and soluble states.
The ectonucleotidases CD39 and CD73 sequentially degrade the extracellular ATP pool and release immunosuppressive adenosine, thereby regulating inflammatory responses. This control is likely to be critical in the gastrointestinal tract where high levels of ATP a
re released in particular by commensal bacteria. The aim of this study was therefore to evaluate the involvement of the adenosinergic regulation in the intestine of mice in steady-state conditions and on acute infection with Toxoplasma gondii. We show that both conventional (Tconv) and regulatory (Treg) CD4(+) T lymphocytes express CD39 and CD73 in the intestine of naive mice. CD73 expression was downregulated during acute infection with T. gondii, leading to impaired capacity to produce adenosine. Interestingly, the expression of adenosine receptors was maintained and treatment with receptor agonists limited immunopathology and dysbiosis, suggesting that the activation of adenosine receptors may constitute an efficient approach to control intestinal inflammation associated with decreased ectonucleotidase expression.
Low levels of B-cell-receptor (BCR) expression are the hallmark of tumoral B lymphocytes in B-cell chronic lymphocytic leukemia (B-CLL). These cells also respond inadequately to stimulation through the BCR. This receptor consists of a surface immunoglobulin associated with a CD7
t:700;'>CD79a/CD79b heterodimer. We previously showed that the intracellular synthesis of BCR components, from transcription onward, is normal. Here, we investigated the glycosylation status and cellular localization of mu, CD79a, and CD79b chains in 10 CLL patients differing in surface immunoglobulin M (IgM) expression. We reported a severe impairment of the glycosylation and folding of mu and CD79a. These defects were associated with the retention of both chains in the endoplasmic reticulum and lower levels of surface IgM expression. In contrast, no clear impairment of glycosylation and folding was observed for CD79b. No sequence defects were identified for BCR components and for the chaperone proteins involved in BCR folding processes. These data show, for the first time, that lower levels of BCR surface expression observed in CLL are accounted for by an impaired glycosylation and folding of the mu and CD79a chains.
The macrophage migration inhibitory factor (MIF) receptor CD74 is overexpressed in various neoplasms, mainly in hematologic tumors, and currently investigated in clinical studies. CD74 is quickly internalized and recycles af
ter antibody binding, therefore it constitutes an attractive target for antibody-based treatment strategies. CD74 has been further described as one of the most up-regulated molecules in human glioblastomas. To assess the potential relevance for anti-CD74 treatment, we determined the cellular source and clinicopathologic relevance of CD74 expression in human gliomas by immunohistochemistry, immunofluorescence, immunoblotting, cell sorting analysis and quantitative polymerase chain reaction (qPCR). Furthermore, we fractionated glioblastoma cells and glioma-associated microglia/macrophages (GAMs) from primary tumors and compared CD74 expression in cellular fractions with whole tumor lysates. Our results show that CD74 is restricted to GAMs in vivo, while being absent in tumor cells, the latter strongly expressing its ligand MIF. Most interestingly, a higher amount of CD74-positive GAMs was associated with beneficial patient survival constituting an independent prognostic parameter and with an anti-tumoral M1 polarization. In summary, CD74 expression in human gliomas is restricted to GAMs and positively associated with patient survival. In conclusion, CD74 represents a positive prognostic marker most probably because of its association with an M1-polarized immune milieu in high-grade gliomas.
Primary adrenal diffuse large B-cell lymphoma (PA-DLBCL) is a rare subtype of extranodal DLBCL. Because of the rarity of this disease, its morphologic and genetic features are not comprehensively studied. Here, we systematically reviewed the clinicopathologic features of 42 cases of PA-DLBCL from ou
r institution and investigated the frequency of MYD88 L265P and CD79B (exon 5) mutation in 29 eligible cases using Sanger sequencing. Clinically, PA-DLBCL was predominant in elderly male patients with advanced clinical stage and poor outcomes. Morphologically, the tumors often showed a sinusoidal and/or cohesive pattern with condensed chromatin and inconspicuous nucleolus which mimicked neuroendocrine carcinoma. Moreover, increased Reed-Sternberg-like cells were observed frequently. These confounding morphologic manifestations may lead to misdiagnosis. Genetically, PA-DLBCL harbored a high prevalence of MYD88 L265P (24%) and CD79B mutations (52%) which may be involved in lymphomagenesis. The CD79B mutation was significantly associated with a worse prognosis. A novel Histo-Molecular Classification system (4 categories) was proposed based on correlation with genetic changes. Generally, the neuroendocrine carcinoma-like type was associated with CD79B mutation, whereas the RS-like cell type indicated MYD88 L265P. The biphasic type was correlated with coexisting mutations of MYD88 and CD79B, whereas the common type implied no mutation. Furthermore, the common type showed significantly better survival. In conclusion, the proposed new category system could indicate the genetic changes as well as facilitate risk stratification to guide treatment and predict prognosis. Although this study augmented our understanding of PA-DLBCL, further analysis is required to validate our results and extend them to extranodal DLBCL at other sites.
Fu S and Davies KP, Int J Impot Res. 2015 Jul;27(4):140-5. doi: 10.1038/ijir.2015.5. Epub 2015 Apr 2.
The precise molecular mechanisms underlying priapism associated with sickle cell disease remain to be defined. However, there is increasing evidence that upregulated activity of the opiorphin and adenosine pathways in corporal tissue, resulting in heighted relaxation of smooth muscle, have an impo
rtant role in development of priapism. A key enzyme in the adenosine pathway is CD73, an ecto-5'-nucleotidase (5'-ribonucleotide phosphohydrolase; EC 3.1.3.5) which catalyzes the conversion of adenosine mononucleotides to adenosine. In the present study we investigated how sickle cell disease and hypoxia regulate the interplay between opiorphin and CD73. In the corpora of sickle cell mice we observed significantly elevated expression of both the mouse opiorphin homolog mSmr3a (14-fold) and CD73 (2.2-fold) relative to non-sickle cell controls at a life stage before the exhibition of priapism. Sickle cell disease has a pronounced hypoxic component, therefore we determined if CD73 was also modulated in in vitro corporal smooth muscle (CSM) models of hypoxia. Hypoxia significantly increased CD73 protein and mRNA expression by 1.5-fold and 2-fold, respectively. We previously demonstrated that expression of another component of the adenosine signaling pathway, the adensosine 2B receptor, can be regulated by sialorphin (the rat opiorphin homolologue), and we demonstrate that sialorphin also regulates CD73 expression in a dose- and time-dependent fashion. Using siRNA to knockdown sialorphin mRNA expression in CSM cells in vitro, we demonstrate that the hypoxic upregulation of CD73 is dependent on the upregulation of sialorphin. Overall, our data provide further evidence to support a role for opiorphin in CSM in regulating the cellular response to hypoxia or sickle cell disease by activating smooth muscle relaxant pathways.
Cao XX, etal., Ann Hematol. 2017 Nov;96(11):1867-1871. doi: 10.1007/s00277-017-3094-7. Epub 2017 Aug 12.
This study is to retrospectively evaluate the prevalence of MYD88 and CD79B mutations and the clinicopathologic characteristics of patients with primary diffuse large B cell lymphoma (DLBCL) of the female genital tract and breast. The characteristics, treatments
, and outcomes of 19 patients diagnosed with primary DLBCL of the female genital tract and breast, who had formalin-fixed and paraffin-embedded tissues obtained from diagnostic samples diagnosed between January 2004 and June 2016, were analyzed retrospectively. Nineteen female patients (7 with primary breast and 12 with primary female genital tract DLBCL) were included in this retrospective study. Eleven patients (57.9%) carried a MYD88 mutation, including 10 with MYD8 L265P and 1 with the MYD88 L265S mutation. Seven patients (36.8%) harbored a CD79B mutation, which included two cases with CD79B Y196H, two cases with CD79B Y196N, one case with CD79B Y196D, one case with CD79B Y196F, and one case with CD79B Y196X. Four cases had both MYD88 and CD79B mutations. The clinicopathologic parameters, progression-free survival (PFS), and overall survival (OS) of the MYD88 mutation-carrying group were not significantly different from those of the MYD88 wild-type group except for higher LDH levels. Six patients received cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP), while 13 patients received rituximab plus CHOP, and 13 patients received central nervous system prophylaxis. The median OS and PFS were 73 and 56 months, respectively. Patients with primary breast and primary female genital tract DLBCL have a high frequency of MYD88 and CD79B mutations. The presence of these mutations does not affect survival but may offer additional therapeutic options.
Nakazato S, etal., Genomics 1998 Mar 15;48(3):363-8.
In the region between the polyadenylation site of the rat skeletal muscle (SkM) Na-channel gene and the 5' end of the growth hormone (GH) gene, a gene coding for B-cell-specific membrane protein B29/Ig-beta was found and noted to have the same orientation as the Na-channel and GH genes. Rat B29/Ig-b
eta gene was 3.1 kb in length with six exons and was separated by 3.3 and 9.3 kb from Na-channel and GH genes, respectively. Rat B29/Ig-beta protein comprised 228 amino acids, and its amino acid sequence was 85 and 69% identical with the mouse and human counterparts, respectively. With the long-area PCR method, genomic DNA connecting human SkM Na-channel (SCN4A) and B29/Ig-beta (CD79B) genes and CD79B and GH (GH1) genes was amplified, and the physical linkage of SCN4A/CD79B/ GH1 genes in the human genome was established. The human CD79B gene was separated by 6.3 and 10.5 kb from the SCN4A and GH1 genes, respectively.
MYD88 and CD79B mutations that activate nuclear factor (NF)-kappaB signaling are prevalent in subsets of diffuse large B-cell lymphoma (DLBCL). We examined the prevalence of somatic mutations in the Toll/interleukin-1 receptor (TIR) domain of MYD88 and the tyro
sine-based activation motif (ITAM) domain of CD79A/B in 18 primary central nervous system (CNS) DLBCLs, and their immunoprofile. MYD88 mutation was found in 17 cases (94.4%), all of which were L265P substitutions. CD79B mutation was found in 11 cases (61.1%), 10 (55.6%) of which were Y196C/D/H substitutions. Mutation of CD79A was completely absent. Immunohistochemically, all the tumors were CD3-/CD5-/CD20+/CD79a+/ GCET1-/BCL6+/MUM1+. Three (16.7%) cases were CD10+, but the majority (15 cases, 83.3%) were CD10-. Overall, all cases harbored either MYD88(L265P) or CD79B(Y196C/D/H), or both, irrespective of their immunoprofile. Our results suggest that CNS DLBCL is a group of tumors harboring a characteristic mutation profile which triggers NF-kappaB signaling in the immune-privileged site.
Vascular dementia (VaD) causes progressive cognitive decline in the elderly population, but there is short of available therapeutic measures. Microglia-mediated neuroinflammation is vigorously involved in the pathogenesis of VaD, but the traditional classification of microglial M1/M2 phenotypes rema
ins restrictive and controversial. This study aims to investigate whether microglia transform into novel subtypes in VaD. Chronic cerebral hypoperfusion (CCH) rat model was constructed to mimic VaD. Microglia were isolated via magnetic-activated cell sorting and analyzed by single-cell RNA sequencing (scRNA-seq) and bioinformatics. The findings inferred from scRNA-seq and bioinformatics were further validated through in vivo experiments. In this study, microglia were divided into eight clusters. The proportion of MG5 cluster was significantly increased in the white matter of the CCH group compared with the Sham group and was named chronic ischemia-associated microglia (CIAM). Immunity- and inflammation-related genes, including RT1-Db1, RT1-Da, RT1-Ba, Cd74, Spp1, C3, and Cd68, were markedly upregulated in CIAM. Enrichment analysis illustrated that CIAM possessed the function of evoking neuroinflammation. Further studies unveiled that Cd74 is associated with the most abundant GO terms involved in inflammation as well as cell proliferation and differentiation. In addition, microglia-specific Cd74 knockdown mediated by adeno-associated virus decreased the abundance of CIAM in the white matter, thereby mitigating inflammatory cytokine levels, alleviating white matter lesions, and improving cognitive impairment for CCH rats. These findings indicate that Cd74 is the core molecule of CIAM to trigger neuroinflammation and induce microglial differentiation to CIAM, suggesting that Cd74 may be a potential therapeutic target for VaD.
CD73 (ecto-5'-nucleotidase), a cell surface enzyme hydrolyzing AMP to adenosine, was lately demonstrated to play a direct role in tumor progression including regulation of tumor vascularization. It was also shown to stimulate tumor macrophage infiltration. Inte
rstitial adenosine, accumulating in solid tumors due to CD73 enzymatic activity, is recognized as a main mediator regulating the production of pro- and anti-angiogenic factors, but the engagement of specific adenosine receptors in tumor progression in vivo is still poorly researched. We have analyzed the role of high affinity adenosine receptors A1, A2A, and A3 in B16F10 melanoma progression using specific agonists (CCPA, CGS-21680 and IB-MECA, respectively). We limited endogenous extracellular adenosine background using CD73 knockout mice treated with CD73 chemical inhibitor, AOPCP (adenosine alpha,beta-methylene 5'-diphosphate). Activation of any adenosine receptor significantly inhibited B16F10 melanoma growth but only at its early stage. At 14th day of growth, the decrease in tumor neovascularization and MAPK pathway activation induced by CD73 depletion was reversed by all agonists. Activation of A1AR primarily increased angiogenic activation measured by expression of VEGF-R2 on tumor blood vessels. However, mainly A3AR activation increased both the microvessel density and expression of pro-angiogenic factors. All agonists induced significant increase in macrophage tumor infiltration, with IB-MECA being most effective. This effect was accompanied by substantial changes in cytokines regulating macrophage polarization between pro-inflammatory and pro-angiogenic phenotype. Our results demonstrate an evidence that each of the analyzed receptors has a specific role in the stimulation of tumor angiogenesis and confirm significantly more multifaceted role of adenosine in its regulation than was already observed. They also reveal previously unexplored consequences to extracellular adenosine signaling depletion in recently proposed anti-CD73 cancer therapy.
Del Poeta G, etal., Leuk Lymphoma. 2010 Jan;51(1):95-106. doi: 10.3109/10428190903350421.
In chronic lymphocytic leukemia (CLL), inhibition of spontaneous apoptosis determines a worse prognosis and increasing evidences show that disease progression relies also upon cycling CLL cells. We investigated bcl-2, as measure of apoptosis, and CD71, as measur
e of proliferation, by flow cytometry in 265 patients with CLL. Combining bcl-2 with CD71 values, we defined three subgroups: (1) bcl2 - CD71-; (2) bcl2 + CD71+; and (3) bcl2 + CD71- or bcl2- CD71+. Both a shorter progression-free survival (PFS) and overall survival (OS) were observed in ZAP-70+ (p < 0.00001) and in patients with bcl2 + CD71+ (p < 0.00001 and p = 0.02). The patients with discordant in bcl2 + CD71- and bcl2- CD71+ showed an intermediate outcome. Noteworthy, patients with bcl2 + CD71+ showed a shorter PFS within ZAP-70 negative subgroup (p = 0.00009). In multivariate analysis of PFS, age (p = 0.005), beta-(2) microglobulin (B(2)-M) (p = 0.003), bcl-2 (p = 0.004), CD49d (p = 0.001), and ZAP-70 (p < 0.001) resulted to be significant prognostic factors. The independent prognostic significance of B(2)-M (p = 0.009) and bcl-2 (p = 0.03) was confirmed within ZAP-70 negative patients. Bcl-2 and CD71 can be considered as interesting progression indicators, which should be validated in an independent cohort of patients, to take timely therapeutic decisions in CLL.
We discovered B-lymphocyte-deficient mice within a group of B10.A-CD45.1 mice, and established that this deficiency was a recessively inherited trait. Gene mapping and sequence analysis showed a mutation in the third exon of the Cd79b gene (c.224G>A) that leads
to the generation of a stop codon (W75X) in the mutant mouse. Fluorescent-activated cell sorting analysis of bone marrow cells showed that the mutant mice did not express the CD79B antigen. To establish where the block in development happens, we analyzed CD43(pos)B220(pos) B-lymphocyte precursors present in the mutant mice and found that the fraction C' (corresponding to early pre-B lymphocytes) was absent in the mutant mouse, whereas fractions B and C showed a relative accumulation. As expected, we found no IgG or IgA in mutant mice. These results suggest that this CD79b-mutant strain may be a useful tool for immunological research in human immunodeficiencies.
Cinci M, etal., Target Oncol. 2015 Sep;10(3):405-13. doi: 10.1007/s11523-014-0345-6. Epub 2014 Nov 15.
The overexpression of membrane-bound complement regulatory proteins (mCRP; CD46, CD55, CD59) preventing opsonization and complement-dependent cytotoxicity (CDC) is considered a major barrier for successful antibody-based cancer immunotherapy. To avoid a potential deleterious effect of mCRP neutrali
zation on normal tissue cells, complement regulation has to be selectively targeted to the malignant cells. In this study, anti-mCRP small interfering RNAs (siRNAs) were encapsulated in transferrin-coupled lipoplexes for the specific delivery to transferrin receptor CD71(high) expressing BT474, DU145, and SW480 as well as corresponding CD71-knockdown (CD71(low)) tumor cells. Targeted delivery with transferrin-siRNA-lipoplexes became possible by charge neutralization and resulted in efficient silencing of all three mCRPs up to 90%, which is dependent on their CD71 expression. The mCRP knockdown led to a significant increase of CDC on CD71(high) tumor cells by 68% in BT474, 58% in DU145, and 40% in SW480 cells but only slightly increased on CD71(low) cells. Downregulation of CD46 and CD55 significantly increased C3 opsonization only on CD71(high) tumor cells. Our results demonstrate for the first time that by specific delivery of anti-mCRP siRNA through transferrin receptor, complement regulation can be selectively neutralized, allowing specific antibody-mediated killing of tumor cells without affecting healthy bystander cells, which appears to be a suited strategy to improve antibody-based cancer immunotherapy.
Bin A, etal., Purinergic Signal. 2018 Dec;14(4):409-421. doi: 10.1007/s11302-018-9623-6. Epub 2018 Sep 29.
Adenosine is a versatile signaling molecule recognized to physiologically influence gut motor functions. Both the duration and magnitude of adenosine signaling in enteric neuromuscular function depend on its availability, which is regulated by the ecto-enzymes ecto-5'-nucleotidase (CD7
-weight:700;'>CD73), alkaline phosphatase (AP), and ecto-adenosine deaminase (ADA) and by dipyridamole-sensitive equilibrative transporters (ENTs). Our purpose was to assess the involvement of CD73, APs, ecto-ADA in the formation of AMP-derived adenosine in primary cultures of ileal myofibroblasts (IMFs). IMFs were isolated from rat ileum longitudinal muscle segments by means of primary explant technique and identified by immunofluorescence staining for vimentin and α-smooth muscle actin. IMFs confluent monolayers were exposed to exogenous 5'-AMP in the presence or absence of CD73, APs, ecto-ADA, or ENTs inhibitors. The formation of adenosine and its metabolites in the IMFs medium was monitored by high-performance liquid chromatography. The distribution of CD73 and ADA in IMFs was detected by confocal immunocytochemistry and qRT-PCR. Exogenous 5'-AMP was rapidly cleared being almost undetectable after 60-min incubation, while adenosine levels significantly increased. Treatment of IMFs with CD73 inhibitors markedly reduced 5'-AMP clearance whereas ADA blockade or inhibition of both ADA and ENTs prevented adenosine catabolism. By contrast, inhibition of APs did not affect 5'-AMP metabolism. Immunofluorescence staining and qRT-PCR analysis confirmed the expression of CD73 and ADA in IMFs. Overall, our data show that in IMFs an extracellular AMP-adenosine pathway is functionally active and among the different enzymatic pathways regulating extracellular adenosine levels, CD73 and ecto-ADA represent the critical catabolic pathway.
Here we describe the generation of an antibody-drug conjugate (ADC) consisting of a humanized anti-CD79b antibody that is conjugated to monomethylauristatin E (MMAE) through engineered cysteines (THIOMABs) by a protease cleavable linker. By using flow cytometry,
we detected the surface expression of CD79b in almost all non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia patients, suggesting that anti-CD79b-vcMMAE could be widely used in these malignancies. By using NHL cell lines to simulate a patient population we discovered that a minimal cell-surface expression level of CD79b was required for in vitro activity. Within the subpopulation of cell lines above this minimal threshold, we found that sensitivity to free MMAE, mutation of cancer genes, and cell doubling time were poorly correlated with in vitro activity; however, the expression level of BCL-XL was correlated with reduced sensitivity to anti-CD79b-vcMMAE. This observation was supported by in vivo data showing that a Bcl-2 family inhibitor, ABT-263, strikingly enhanced the activity of anti-CD79b-vcMMAE. Furthermore, anti-CD79b-vcMMAE was significantly more effective than a standard-of-care regimen, R-CHOP (ie, rituximab with a single intravenous injection of 30 mg/kg cyclophosphamide, 2.475 mg/kg doxorubicin, 0.375 mg/kg vincristine, and oral dosing of 0.15 mg/kg prednisone once a day for 5 days), in 3 xenograft models of NHL. Together, these data suggest that anti-CD79b-vcMMAE could be broadly efficacious for the treatment of NHL.
Muller G, etal., Obesity (Silver Spring). 2011 Mar 3.
Filling-up lipid stores is critical for size increase of mammalian adipocytes. The glycosylphosphatidylinositol (GPI)-anchored protein, CD73, is released from adipocytes into microvesicles in response to the lipogenic stimuli, palmitate, the antidiabetic sulfony
lurea drug glimepiride, phosphoinositolglycans (PIG), and H(2)O(2). Upon incubation of microvesicles with adipocytes, CD73 is translocated to cytoplasmic lipid droplets (LD) and esterification is upregulated. The role of CD73-harboring microvesicles in coordinating esterification between differently sized adipocytes was studied here. Populations consisting of either small or large or of both small and large isolated rat adipocytes as well as native adipose tissue pieces from young and old rats were incubated with or depleted of endogenous microvesicles and analyzed for translocation of CD73 and esterification in response to the lipogenic stimuli. Large adipocytes exhibited higher and lower efficacy in releasing CD73 into microvesicles and in translocating CD73 to LD, respectively, compared to small adipocytes. Populations consisting of both small and large adipocytes were more active in esterification in response to the lipogenic stimuli than either small or large adipocytes. With both adipocytes and adipose tissue pieces from young rats esterification stimulation by the lipogenic stimuli was abrogated by depletion of CD73-harboring microvesicles from the incubation medium and interstitial spaces, respectively. In conclusion, stimulus-induced lipid synthesis between differently sized adipocytes is controlled by the release of microvesicle-associated CD73 from large cells and its subsequent translocation to LD of small cells. This information transfer via microvesicles harboring GPI-anchored proteins may shift the burden of triacylglycerol storage from large to small adipocytes.
Vera PL, etal., Exp Biol Med (Maywood). 2008 May;233(5):620-6. Epub 2008 Mar 28.
The objective of this study was to determine if macrophage migration inhibitory factor (MIF) is upregulated in the bladder during persistent cystitis. MIF is a pro-inflammatory cytokine found pre-formed in the urothelium. Previous findings showed that acute bladder inflammation increased MIF release
into the bladder lumen while upregulating MIF and CD74 (MIF receptor) in the bladder. Because the effects of persistent cystitis on MIF and CD74 are not known, MIF and CD74 changes in the bladder were examined after short-term (1-day) or persistent (8-day) cyclophosphamide (CYP)-induced bladder inflammation. Anesthetized male Sprague-Dawley rats received either a single CYP treatment (150 mg/kg, ip; saline, control) and examined 1 day after treatment (short-term), or repeated CYP doses (20-75 mg/ kg, ip; saline, control; every third day for 8 days) and examined after 8 days of treatment (persistent). MIF protein levels in urine and bladder were determined. In addition, Mif, CD74, and cox-2 expression in the bladder was determined. Histology verified cystitis and MIF and CD74 immunoreactivity in the bladder. Repeated CYP doses were decreased to avoid toxicity. Short-term or repeated low CYP doses (40 mg/kg; 8 days) increased urinary MIF and decreased bladder MIF amounts while upregulating bladder Mif and CD74 mRNA expression. Persistent CYP-induced bladder inflammation (even at 40 mg/kg; 8-day treatment) also upregulated other inflammatory cytokines (CCL5, IL-11, iNOS) in the bladder. Short-term and persistent (low dose) CYP cystitis are associated with markedly increased MIF release into the urine and upregulation of Mif and CD74 in bladder. This supports the hypothesis that MIF and CD74 play a significant role in both acute and persistent stages of bladder inflammation.