Han Z, etal., Oncotarget. 2015 May 30;6(15):13149-63.
Cyclin E1, encoded by the CCNE1 gene, promotes G1/S transition, chromosome instability, and oncogenesis. Here, we show that miR-497 and miR-34a target the 3'-UTR of CCNE1. miR-497 and miR-34a are downregulated in cancer cell
s and their ectopic expression inhibited cell proliferation and colony formation in vitro, and inhibited tumor growth in a xenograft model. The effect of simultaneous overexpression of miR-497 and miR-34a on the inhibition of cell proliferation, colony formation, and tumor growth, and the downregulation of cyclin E1 was stronger than the effect of each miRNA alone. The synergistic actions of miR-497 and miR-34a partly correlated with cyclin E1 levels. When cells stably expressing CCNE1 were transfected with the Hi-miR-497/34a plasmid, there was no effect on colony formation, compared with that of cells transfected with either Hi-miR497 or Hi-miR34a. These results indicate cyclin E1 is downregulated by both miR-497 and miR-34a, which synergistically retard the growth of human lung cancer cells.
Nakayama K, etal., Int J Oncol. 2016 Feb;48(2):506-16. doi: 10.3892/ijo.2015.3268. Epub 2015 Nov 26.
The clinicopathological significance of amplification was investigated of the gene encoding cyclin E (CCNE1) and we assessed whether CCNE1 was a potential target in endometrioid endometrial carcinomas. CCNE1
ht:700;'>CCNE1 amplification and CCNE1 or F-box and WD repeat domain-containing 7 (FBXW7) expression in endometrial endometrioid carcinoma was assessed by immunohistochemistry and fluorescence in situ hybridization. CCNE1 knockdown by small interfering RNA (siRNA) was used to assess the CCNE1 function. The results showed that CCNE1 amplification was present in 9 (8.3%) of 108 endometrial carcinomas. CCNE1 amplification was correlated with high histological grade (Grade 3; p=0.0087) and lymphovascular space invasion (p=0.0258). No significant association was observed between CCNE1 amplification and FIGO stage (p=0.851), lymph node metastasis (p=0.078), body mass index (p=0.265), deep myometrial invasion (p=0.256), menopausal status (p=0.289) or patient age (p=0.0817). CCNE1 amplification was significantly correlated with shorter progression-free and overall survival (p=0.0081 and 0.0073, respectively). CCNE1 protein expression or loss of FBXW7 expression in endometrial endometrioid carcinoma tended to be correlated with shorter progression-free and overall survival; however, this difference was not statistically significant. Multivariate analysis showed that CCNE1 amplification was an independent prognostic factor for overall survival but not for progression-free survival (P=0.0454 and 0.2175, respectively). Profound growth inhibition was observed in siRNA-transfected cancer cells with endogenous CCNE1 overexpression compared with that in cancer cells having low CCNE1 expression. CCNE1 amplification was independent of p53, HER2, MLH1 and ARID1A expression but dependent on PTEN expression in endometrial carcinomas. These findings indicated that CCNE1 amplification was critical for the survival of endometrial endometrioid carcinomas. Furthermore, the effects of CCNE1 knockdown were dependent on the CCNE1 expression status, suggesting that CCNE1-targeted therapy may be beneficial for patients with endometrial endometrioid carcinoma having CCNE1 amplification.
Ma J, etal., Cell Oncol (Dordr). 2020 Jun;43(3):377-394. doi: 10.1007/s13402-019-00493-5. Epub 2020 Mar 4.
BACKGROUND: Long non-coding RNAs (lncRNAs) are transcribed pervasively in the genome and act to regulate chromatin remodeling and gene expression. Dysregulated lncRNA expression has been reported in many cancers, but the role of lncRNAs in esophageal cancer (EC) has so far remained poorly
understood. In this study, we aimed to understand the effect of lncRNA LINC01234 on EC development through competitively binding to microRNA-193a-5p (miR-193a-5p). METHODS: The Gene Expression Omnibus (GEO) database was used for microarray-based EC expression profiling. Gain- and loss-of-function analyses were carried out in human EC-derived Eca-109 and EC9706 cells. Expression analyses of miR-193a-5p, LINC01234, CCNE1, caspase-3, p21, Bax, cyclinD1 and Bcl-2 were performed using RT-qPCR and Western blotting. Cell proliferation, colony formation and apoptosis analyses were carried out using MTT, Hoechst 33258 and flow cytometry assays. A xenograft EC model in nude mice was used to evaluate in vivo tumor growth and CCNE1 expression. RESULTS: Microarray-based analyses revealed that LINC01234 expression was increased in primary EC samples, whereas that of miR-193a-5p was decreased. We found that CCNE1 was a target of miR-193a-5p and that LINC01234, in turn, sponges miR-193a-5p. After treatment with si-LINC01234 or miR-193a-5p mimic, EC cells (Eca-109 and EC9706) exhibited cyclinD1 and Bcl-2 downregulation, and caspase-3, p21, Bax and cleaved caspase-3 upregulation. LINC01234 silencing or miR-193a-5p upregulation resulted in decreased proliferation and colony formation, and increased apoptosis of EC cells. In addition, LINC01234 silencing or miR-193a-5p upregulation resulted in reduced in vivo EC tumor growth and CCNE1 expression in nude mice. CONCLUSIONS: We found that silencing of LINC01234 suppresses EC development by inhibiting CCNE1 through competitively binding to miR-193a-5p, which suggests that LINC01234 may represent a novel target for EC therapy.
Kim SH, etal., Investig Clin Urol. 2016 Jan;57(1):63-72. doi: 10.4111/icu.2016.57.1.63. Epub 2016 Jan 11.
PURPOSE: The mechanism of resistance to cisplatin during treatment of bladder cancer (BC) has been a subject of intense investigation in clinical research. This study aims to identify candidate genes associated with resistance to cisplatin, in order to understand the resistance mechanism
of BC cells to the drug, by combining the use of microarray profiling, quantitative reverse transcription-polymerase chain reaction (RT-PCR), and Western blot analyses. MATERIALS AND METHODS: The cisplatin sensitive human BC cell line (T24) and the cisplatin resistant BC cell line, T24R2, were used for microarray analysis to determine the differential expression of genes that are significant in cisplatin resistance. Candidate upregulated genes belonging to three well-known cancer-related KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways (p53 tumor suppressor, apoptosis, and cell cycle) were selected from the microarray data. These candidate genes, differentially expressed in T24 and T24R2, were then confirmed by quantitative RT-PCR and western blot. A fold change >=2 with a p-value <0.05 was considered significant. RESULTS: A total of 18 significantly upregulated genes were detected in the three selected cancer-related pathways in both microarray and RT-PCR analyses. These genes were PRKAR2A, PRKAR2B, CYCS, BCL2, BIRC3, DFFB, CASP6, CDK6, CCNE1, STEAP3, MCM7, ORC2, ORC5, ANAPC1, and ANAPC7, CDC7, CDC27, and SKP1. Western blot analyses also confirmed the upregulation of BCL2, MCM7, and CCNE1 at the protein level, indicating their crucial association with cisplatin resistance. CONCLUSIONS: The BCL2, MCM7, and CCNE1 genes might play distinctive roles in cisplatin resistance in BC.