Lanternier F, etal., N Engl J Med. 2013 Oct 31;369(18):1704-1714. doi: 10.1056/NEJMoa1208487. Epub 2013 Oct 16.
BACKGROUND: Deep dermatophytosis is a severe and sometimes life-threatening fungal infection caused by dermatophytes. It is characterized by extensive dermal and subcutaneous tissue invasion and by frequent dissemination to the lymph nodes and, occasionally, the central nervous system. Th
e condition is different from common superficial dermatophyte infection and has been reported in patients with no known immunodeficiency. Patients are mostly from North African, consanguineous, multiplex families, which strongly suggests a mendelian genetic cause. METHODS: We studied the clinical features of deep dermatophytosis in 17 patients with no known immunodeficiency from eight unrelated Tunisian, Algerian, and Moroccan families. Because CARD9 (caspase recruitment domain-containing protein 9) deficiency has been reported in an Iranian family with invasive fungal infections, we also sequenced CARD9 in the patients. RESULTS: Four patients died, at 28, 29, 37, and 39 years of age, with clinically active deep dermatophytosis. No other severe infections, fungal or otherwise, were reported in the surviving patients, who ranged in age from 37 to 75 years. The 15 Algerian and Tunisian patients, from seven unrelated families, had a homozygous Q289X CARD9 allele, due to a founder effect. The 2 Moroccan siblings were homozygous for the R101C CARD9 allele. Both alleles are rare deleterious variants. The familial segregation of these alleles was consistent with autosomal recessive inheritance and complete clinical penetrance. CONCLUSIONS: All the patients with deep dermatophytosis had autosomal recessive CARD9 deficiency. Deep dermatophytosis appears to be an important clinical manifestation of CARD9 deficiency. (Funded by Agence Nationale pour la Recherche and others.).
Leo VI, etal., Cancer Immunol Res. 2015 Jul;3(7):721-6. doi: 10.1158/2326-6066.CIR-14-0148. Epub 2015 May 4.
Caspase recuitment domain-containing protein 9 (CARD9) functions in different inflammation pathways to elicit responses to microbial signals and is known to affect intestinal inflammation. Examining the APC(min) mouse model of intestinal tumorigenesis and using
stringently controlled, sex- and age-matched pairs of CARD9-competent and CARD9-deficient mice, we have found that CARD9 has a restricted but strong effect on tumorigenesis in the large intestine. We have found that CARD9 reduces viability specifically in males and promotes tumorigenesis specifically in the large intestines of these male mice. To our knowledge, this is the first gene ablation in APC(min) mice that solely affects colon tumors in male subjects and, as such, may have significant clinical implications. Additional data suggest correlative disruption of plasma cytokine expression and immune infiltration of the tumors. We speculate that known sex-specific differences in human colorectal cancer may involve inflammation, particularly CARD9-dependent inflammation.
Deep dermatophytosis has been described in HIV and immunosuppressed patients. Recently, CARD9 (caspase recruitment domain-containing protein 9) deficiency has been reported in individuals with deep dermatophytosis previously classified as "immunocompetent". We
report a 24-year-old Brazilian male patient with deep dermatophytosis born to an apparently non-consanguineous family. The symptoms started with oral candidiasis when he was 3 years old, persistent although treated. At 11 years old, well delimited, desquamative and pruriginous skin lesions appeared in the mandibular area; ketoconazole and itraconazole were introduced and maintained for 5 years. At 12 years of age, the lesions, which initially affected the face, started to spread to thoracic and back of the body (15 cm of diameter) and became ulcerative, secretive and painful. Terbinafine was introduced without any improvement. Trichophyton mentagrophytes was isolated from the skin lesions. A novel homozygous mutation in CARD9 (R101L) was identified in the patient, resulting in impaired neutrophil fungal killing. Both parents, one brother (with persistent superficial but not deep dermatophytosis) and one sister were heterozygous for this mutation, while another brother was found to be homozygous for the CARD9 wild-type allele. This is the first report of CARD9 deficiency in Latin America.
Yan XX, etal., Br J Dermatol. 2016 Jan;174(1):176-9. doi: 10.1111/bjd.14082. Epub 2015 Nov 17.
Corynespora cassiicola is a plant pathogen associated with leaf-spotting disease. The fungus has been found on diverse substrates: leaves, stems and roots of plants; nematode cysts and human skin. It rarely causes human infections. Here we report one case of subcutaneous phaeohyphomycosis caused by
C. cassiicola with prominent tissue necrosis in a woman. All of her clinical features pointed towards a genetic linkage. Hence, whole-exome sequencing and Sanger sequencing were performed on this patient. One mutation of CARD9 was detected.
BACKGROUND: Caspase recruitment domain-containing protein 9 (CARD9) deficiency is an autosomal recessive primary immunodeficiency conferring human susceptibility to invasive fungal disease, including spontaneous central nervous system candidiasis (sCNSc). Howeve
r, clinical characterization of sCNSc is variable, hindering its recognition. Furthermore, an in-depth understanding of the bases for this susceptibility has remained elusive. OBJECTIVES: We sought to comprehensively characterize sCNSc and to dissect the mechanisms by which a hypomorphic CARD9 mutation causes susceptibility to Candida species. METHODS: We describe the clinical and radiologic findings of sCNSc caused by CARD9 deficiency in a French-Canadian cohort. We performed genetic, cellular, and molecular analyses to further decipher its pathophysiology. RESULTS: In our French-Canadian series (n = 4) sCNSc had onset in adulthood (median, 38 years) and was often misinterpreted radiologically as brain malignancies; 1 patient had additional novel features (eg, endophthalmitis and osteomyelitis). CARD9 deficiency resulted from a hypomorphic p.Y91H mutation and allelic imbalance established in this population through founder effects. We demonstrate a consistent cellular phenotype of impaired GM-CSF responses. The ability of CARD9 to complex with B-cell CLL/lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is intact in our series, arguing against its involvement in susceptibility to fungi. Instead, we show that the p.Y91H mutation impairs the ability of CARD9 to complex with Ras protein-specific guanine nucleotide-releasing factor 1 (RASGRF1), leading to impaired activation of nuclear factor kappaB and extracellular signal-regulated kinase (ERK) in monocytes and subsequent GM-CSF responses. Successful treatment of a second patient with adjunctive GM-CSF bolsters the clinical relevance of these findings. CONCLUSIONS: Hypomorphic CARD9 deficiency caused by p.Y91H results in adult-onset disease with variable penetrance and expressivity. Our findings establish the CARD9/RASGRF1/ERK/GM-CSF axis as critical to the pathophysiology of sCNSc.
Cao Z, etal., Immunity. 2015 Oct 20;43(4):715-26. doi: 10.1016/j.immuni.2015.10.005.
CARD9 is a central component of anti-fungal innate immune signaling via C-type lectin receptors, and several immune-related disorders are associated with CARD9 alterations. Here, we used a rare CARD9
'>CARD9 variant that confers protection against inflammatory bowel disease as an entry point to investigating CARD9 regulation. We showed that the protective variant of CARD9, which is C-terminally truncated, acted in a dominant-negative manner for CARD9-mediated cytokine production, indicating an important role for the C terminus in CARD9 signaling. We identified TRIM62 as a CARD9 binding partner and showed that TRIM62 facilitated K27-linked poly-ubiquitination of CARD9. We identified K125 as the ubiquitinated residue on CARD9 and demonstrated that this ubiquitination was essential for CARD9 activity. Furthermore, we showed that similar to Card9-deficient mice, Trim62-deficient mice had increased susceptibility to fungal infection. In this study, we utilized a rare protective allele to uncover a TRIM62-mediated mechanism for regulation of CARD9 activation.
Bertin J, etal., J Biol Chem 2000 Dec 29;275(52):41082-6.
BCL10/CLAP is an activator of apoptosis and NF-kappaB signaling pathways and has been implicated in B cell lymphomas of mucosa-associated lymphoid tissue. Although its role in apoptosis remains to be determined, BCL10 likely activates NF-kappaB through the IKK complex in response to upstream stimuli
. The N-terminal caspase recruitment domain (CARD) of BCL10 has been proposed to function as an activation domain that mediates homophilic interactions with an upstream CARD-containing NF-kappaB activator. To identify upstream signaling partners of BCL10, we performed a mammalian two-hybrid analysis and identified CARD9 as a novel CARD-containing protein that interacts selectively with the CARD activation domain of BCL10. When expressed in cells, CARD9 binds to BCL10 and activates NF-kappaB. Furthermore, endogenous CARD9 is found associated with BCL10 suggesting that both proteins form a pre-existing signaling complex within cells. CARD9 also self-associates and contains extensive coiled-coil motifs that may function as oligomerization domains. We propose here that CARD9 is an upstream activator of BCL10 and NF-kappaB signaling.
Liu Y, etal., Cardiovasc Res. 2015 Oct 1;108(1):148-58. doi: 10.1093/cvr/cvv211. Epub 2015 Aug 4.
AIMS: Inflammation plays an important role in the neointima formation of grafted veins. However, the initiation of inflammation in grafted veins is still unclear. Here, we investigated the role and underlying mechanism of an innate immunity signalling protein, caspase-associated recruitment domain
9 (CARD9) in vein grafts in mice. METHODS AND RESULTS: In early murine vein grafts, we observed robust death of smooth muscle cells (SMCs), which was accompanied by infiltration of macrophages and expression of pro-inflammatory cytokines. Meanwhile, SMC necrosis was associated with the expression of pro-inflammatory cytokines in macrophages in vitro. To explore the mediators of necrotic SMC-induced inflammation in grafted veins from mice, we examined the expression of CARD family proteins and found CARD9 highly expressed in infiltrated macrophages of grafted veins. CARD9-knockout (KO) inhibited necrotic SMC-induced pro-inflammatory cytokine expression and NF-kappaB activation. Furthermore, CARD9-KO suppressed necrotic SMC-induced expression of VEGF in macrophages. Finally, CARD9-KO decreased neointima formation of grafted veins in mice. CONCLUSION: The innate immune protein CARD9 in macrophages may mediate necrotic SMC-induced inflammation by activating NF-kappaB and contributed to neointima formation in the vein grafts.
Candida is the most common human fungal pathogen and causes systemic infections that require neutrophils for effective host defense. Humans deficient in the C-type lectin pathway adaptor protein CARD9 develop spontaneous fungal disease that targets the central n
ervous system (CNS). However, how CARD9 promotes protective antifungal immunity in the CNS remains unclear. Here, we show that a patient with CARD9 deficiency had impaired neutrophil accumulation and induction of neutrophil-recruiting CXC chemokines in the cerebrospinal fluid despite uncontrolled CNS Candida infection. We phenocopied the human susceptibility in Card9-/- mice, which develop uncontrolled brain candidiasis with diminished neutrophil accumulation. The induction of neutrophil-recruiting CXC chemokines is significantly impaired in infected Card9-/- brains, from both myeloid and resident glial cellular sources, whereas cell-intrinsic neutrophil chemotaxis is Card9-independent. Taken together, our data highlight the critical role of CARD9-dependent neutrophil trafficking into the CNS and provide novel insight into the CNS fungal susceptibility of CARD9-deficient humans.
Ankylosing spondylitis (AS) is a chronic inflammatory disease of unknown origin, while both genetic and environmental factors have been demonstrated to be etiologically involved. Recent genome-wide association and replication studies have suggested that anthrax toxin receptor 2 (ANTXR2), interleuki
n-1 receptor 2 (IL1R2), caspase recruitment domain-containing protein 9 (CARD9), and small nuclear RNA-activating complex polypeptide 4 (SNAPC4) seem to be associated with AS pathogenesis. This case-control study was performed on 349 unrelated AS patients and 469 age- and gender-matched healthy controls, to investigate whether these non-MHC genes (IL1R2 rs2310173, ANTXR2 rs4333130, CARD9 rs4077515, and SNAPC4 rs3812571) influence the AS risk in Iranian population. ANTXR2 rs4333130 allele C (p = 0.0328; OR 0.744, 95% CI 0.598-0.927) and genotype CC (p = 0.0108; OR 0.273, 95% CI 0.123-0.605) were found to be significantly protective against AS. No other associations were found between AS and studied genes. The association between ANTXR2 rs4333130 and AS was independent of HLA-B27 status. Moreover, we found clinical disease severity scores (BASDAI and BASFI) and pain score were higher in ANTXR2 rs4333130 CT genotype. However, we observed that CARD9 allele C (p = 0.012) and genotype CC (p = 0.012) were significant protective factors against AS only in HLA-B27-negative patients, and IL1R2 rs2310173 genotype GT was mildly protective against AS only in HLA-B27-negative status. These findings support the role of non-MHC pathogenic pathways in susceptibility to AS and warrants more comprehensive studies focusing on these non-MHC pathways for developing novel therapeutic strategies.
Wang Z, etal., Int J Clin Exp Pathol. 2015 Oct 1;8(10):13465-70. eCollection 2015.
OBJECTIVE: In order to investigate whether CARD9 gene is associated with IBD in Chinese Han population, we replicated 2 SNPs of CARD9 which have been reported to be significantly associated with IBD. METHODS: Two SNPs were g
enotyped using polymerase chain reaction with sequence-specific primers in 288 patients (232 CD patients, 56 UC patients) and 274 controls. RESULTS: The frequencies and distributions of alleles and genotypes of the tested SNPs were analyzed, and no significant differences were found between patients and controls. CONCLUSIONS: We observed no significant association between the investigated CARD9 SNPs and the susceptibility of either CD or UC. Further studies with larger sample size focusing on different ethnicities are required to elucidate the correlation between CARD9 and IBD.
Uematsu T, etal., Sci Rep. 2015 Dec 2;5:17577. doi: 10.1038/srep17577.
Influenza virus (IFV) infection is a common cause of severe viral pneumonia associated with acute respiratory distress syndrome (ARDS), which is difficult to control with general immunosuppressive therapy including corticosteroids due to the unfavorable effect on viral replication. Studies have sugg
ested that the excessive activation of the innate immunity by IFV is responsible for severe pathologies. In this study, we focused on CARD9, a signaling adaptor known to regulate innate immune activation through multiple innate sensor proteins, and investigated its role in anti-IFV defense and lung pathogenesis in a mouse model recapitulating severe influenza pneumonia with ARDS. We found that influenza pneumonia was dramatically attenuated in Card9-deficient mice, which showed improved mortality with reduced inflammatory cytokines and chemokines in the infected lungs. However, viral clearance, type-I interferon production, and the development of anti-viral B and T cell immunity were not compromised by CARD9 deficiency. Syk or CARD9-deficient DCs but not macrophages showed impaired cytokine but not type-I interferon production in response to IFV in vitro, indicating a possible role for the Syk-CARD9 pathway in DCs in excessive inflammation of IFV-infected lungs. Therefore, inhibition of this pathway is an ideal therapeutic target for severe influenza pneumonia without affecting viral clearance.
Lee EJ, etal., J Immunol. 2016 Apr 1;196(7):3148-58. doi: 10.4049/jimmunol.1502355. Epub 2016 Feb 26.
Uveitis, which occurs in association with systemic immunological diseases, presents a considerable medical challenge because of incomplete understanding of its pathogenesis. The signals that initiate T cells to target the eye, which may be of infectious or noninfectious origin, are poorly understo
od. Experimental autoimmune uveoretinitis (EAU) develops in mice immunized with the endogenous retinal protein interphotoreceptor retinoid binding protein in the presence of the adjuvant CFA. EAU manifests as posterior ocular inflammation consisting of vasculitis, granulomas, retinal damage, and invasion of self-reactive T cells, which are key clinical features of human uveitis. Our studies uncover Card9 as a critical genetic determinant for EAU. Card9 was responsible for Th17 polarization and Th17-associated Ag-specific responses, but not Th1-associated responses. Nonetheless, Card9 expression was essential for accumulation of both lineages within the eye. Consistent with its recently identified role as an intracellular signaling mediator for C-type lectin receptors (CLRs), a Card9-dependent transcriptional response in the neuroretina was observed involving genes encoding the CLRs Dectin-1, Dectin-2, and Mincle. Genetic deletion of these individual CLRs revealed an essential role for Mincle. Mincle activation was sufficient to generate the EAU phenotype, and this required activation of both Syk and Card9. In contrast, Dectin-1 contributed minimally and a possible repressive role was shown for Dectin-2. These findings extend our understanding of CLRs in autoimmune uveitis. The newly identified role of Mincle and Syk/Card9-coupled signaling axis in autoimmune uveitis could provide novel targets for treatment of patients with ocular inflammatory disease.
Neutrophils are terminally differentiated cells with limited transcriptional activity. The biological function of their gene expression changes is poorly understood. CARD9 regulates transcription during antifungal immunity but its role in sterile inflammation is
unclear. Here we show that neutrophil CARD9 mediates pro-inflammatory chemokine/cytokine but not lipid mediator release during non-infectious inflammation. Genetic deficiency of CARD9 suppresses autoantibody-induced arthritis and dermatitis in mice. Neutrophil-specific deletion of CARD9 is sufficient to induce that phenotype. Card9(-/-) neutrophils show defective immune complex-induced gene expression changes and pro-inflammatory chemokine/cytokine release but normal LTB4 production and other short-term responses. In vivo deletion of CARD9 reduces tissue levels of pro-inflammatory chemokines and cytokines but not LTB4. The CARD9-mediated signalling pathway involves Src-family kinases, Syk, PLCgamma2, Bcl10/Malt1 and NFkappaB. Collectively, CARD9-mediated gene expression changes within neutrophils play important roles during non-infectious inflammation in vivo and CARD9 acts as a divergence point between chemokine/cytokine and lipid mediator release.
Nakamura S, etal., Cancer. 2005 Nov 1;104(9):1885-93. doi: 10.1002/cncr.21421.
BACKGROUND: Although caspase recruitment domain (CARD) membrane-associated guanylate kinase (MAGUK) protein 1 (CARMA1) and CARD9 play important roles in lymphocyte activation, the significance of CARMA1 and CARD9
in the pathogenesis of gastric mucosa-associated lymphoid tissue (MALT) lymphoma remains to be elucidated. METHODS: By using reverse transcription-polymerase chain reaction analysis, the expression levels of mRNA of CARMA1, CARD9, Bcl10, and the apoptosis inhibitor 2 (API2)-MALT1 chimeric transcript were determined in tissue specimens from 65 patients with primary gastric B-cell lymphoma (43 patients with low-grade MALT lymphoma, 16 patients with MALT lymphoma plus diffuse large B-cell lymphoma [DLBL], and 6 patients with DLBL without MALT lymphoma) and in tissue specimens from 18 patients with chronic gastritis. The expression levels of CARMA1 and BCL10 were examined immunohistochemically in 30 patients with lymphoma. RESULTS: CARMA1 mRNA was detected in 55% of lymphoma patients but in only 17% of chronic gastritis patients. The positive rates for CARD9, Bcl10, and API2-MALT1 chimeric transcript in the lymphoma patients were 48%, 98%, and 8%, respectively, whereas the 3 molecules were not detected in any specimens from patients with chronic gastritis. The expression of CARMA1 and CARD9 was frequent in the Helicobacter pylori-negative patients (100% and 86%, respectively), in the API2-MALT1 chimeric transcript-positive patients (100% and 100%, respectively), and in the specimens from patients who did not respond to H. pylori eradication (76% and 71%, respectively). In addition, CARMA1 expression was positive more frequently in patients of DLBL without MALT lymphoma (100%) than in patients of MALT lymphoma (51%). CARMA1 protein expression was correlated significantly with the expression of CARMA1 mRNA and also with the expression of nuclear BCL10. CONCLUSIONS: The overexpression of CARMA1 and CARD9 presumably is associated with the development or progression of gastric B-cell lymphoma, especially among patients who have disease in which the pathogenesis is not related to H. pylori.
Strasser D, etal., Immunity. 2012 Jan 27;36(1):32-42. doi: 10.1016/j.immuni.2011.11.015.
C-type lectin receptors (CLRs) that couple with the kinase Syk are major pattern recognition receptors for the activation of innate immunity and host defense. CLRs recognize fungi and other forms of microbial or sterile danger, and they induce inflammatory responses through the adaptor protein ... (more)
n style='font-weight:700;'>Card9. The mechanisms relaying CLR proximal signals to the core Card9 module are unknown. Here we demonstrated that protein kinase C-delta (PKCdelta) was activated upon Dectin-1-Syk signaling, mediated phosphorylation of Card9 at Thr231, and was responsible for Card9-Bcl10 complex assembly and canonical NF-kappaB control. Prkcd(-/-) dendritic cells, but not those lacking PKCalpha, PKCbeta, or PKCtheta, were defective in innate responses to Dectin-1, Dectin-2, or Mincle stimulation. Moreover, Candida albicans-induced cytokine production was blocked in Prkcd(-/-) cells, and Prkcd(-/-) mice were highly susceptible to fungal infection. Thus, PKCdelta is an essential link between Syk activation and Card9 signaling for CLR-mediated innate immunity and host protection.