Genetic diversity at the human beta-globin locus has been implicated as a modifier of sickle cell anaemia (SCA) severity. However, haplotypes defined by restriction fragment length polymorphism sites across the beta-globin locus have not been consistently associated with clinical phenotypes. To def
ine the genetic structure at the beta-globin locus more thoroughly, we performed high-density single nucleotide polymorphism (SNP) mapping in 820 children who were homozygous for the sickle cell mutation (HbSS). Genotyping results revealed very high linkage disequilibrium across a large region spanning the locus control region and the HBB (beta-globin gene) cluster. We identified three predominant haplotypes accounting for 96% of the beta(S) -carrying chromosomes in this population that could be distinguished using a minimal set of common SNPs. Consistent with previous studies, fetal haemoglobin level was significantly associated with beta(S) -haplotypes. After controlling for covariates, an association was detected between haplotype and rate of hospitalization for acute chest syndrome (ACS) (incidence rate ratio 0.51, 95% confidence interval 0.29-0.89) but not incidence rate of vaso-occlusive pain or presence of silent cerebral infarct (SCI). Our results suggest that these SNP-defined beta(S) -haplotypes may be associated with ACS, but not pain or SCI in a study population of children with SCA.
Current technology allows clinical laboratories to rapidly translate research discoveries from small patient cohorts into clinical genetic tests; therefore, a potentially large proportion of sequence variants identified in individuals with clinical features of a genetic disorder remain unpublished
. Without a mechanism for clinical laboratories to share data, interpretation of sequence variants may be inconsistent. We describe here the two components of Emory Genetics Laboratory's (EGL) in-house developed data management system. The first is a highly curated variant database with a data structure designed to facilitate sharing of information about variants identified at EGL with curated databases. This system also tracks changes in variant classifications, creating a record of previous cases in need of updated reports when a classification is changed. The second component, EmVClass, is a Web-based interface that allows any user to view the inventory of variants classified at EGL. These software tools provide a solution to two pressing issues faced by clinical genetics laboratories: how to manage a large variant inventory with evolving variant classifications that need to be communicated to healthcare providers and how to make that inventory of variants freely available to the community.
Sickle cell disease is a common hemolytic disorder with a broad range of complications, including vaso-occlusive episodes, acute chest syndrome (ACS), pain, and stroke. Heme oxygenase-1 (gene HMOX1; protein HO-1) is the inducible, rate-limiting enzyme in the catabolism of heme and might attenuate th
e severity of outcomes from vaso-occlusive and hemolytic crises. A (GT)(n) dinucleotide repeat located in the promoter region of the HMOX1 gene is highly polymorphic, with long repeat lengths linked to decreased activity and inducibility. We examined this polymorphism to test the hypothesis that short alleles are associated with a decreased risk of adverse outcomes (hospitalization for pain or ACS) among a cohort of 942 children with sickle cell disease. Allele lengths varied from 13 to 45 repeats and showed a trimodal distribution. Compared with children with longer allele lengths, children with 2 shorter alleles (4%; = 25 repeats) had lower rates of hospitalization for ACS (incidence rate ratio 0.28, 95% confidence interval, 0.10-0.81), after adjusting for sex, age, asthma, percentage of fetal hemoglobin, and alpha-globin gene deletion. No relationship was identified between allele lengths and pain rate. We provide evidence that genetic variation in HMOX1 is associated with decreased rates of hospitalization for ACS, but not pain. This study is registered at www.clinicaltrials.gov as #NCT00072761.
Bean AJ, etal., Nature 1997 Feb 27;385(6619):826-9.
Associations between proteins present on neurotransmitter-containing vesicles and on the presynaptic membrane are thought to underlie docking and fusion of synaptic vesicles with the plasma membrane, which are obligate steps in regulated neurotransmission. SNAP-25 resides on the plasma membrane and
interacts with syntaxin (a plasma membrane t-SNARE) and VAMP (a vesicle v-SNARE) to form a core protein complex thought to be an intermediate in a biochemical pathway that is essential for vesicular transport. We have now characterized a protein, Hrs-2, that interacts with SNAP-25. The binding of Hrs-2 to SNAP-25 is inhibited by calcium in the physiological concentration range that supports synaptic transmission. Furthermore, Hrs-2 binds and hydrolyses nucleoside triphosphates with kinetics that suggest that ATP is the physiological substrate for this enzyme. Hrs-2 is expressed throughout the brain and is present in nerve terminals. Moreover, recombinant Hrs-2 inhibits calcium-triggered 3H-noradrenaline release from permeabilized PC12 cells. Our results suggest a role for Hrs-2 in regulating secretory processes through calcium- and nucleotide-dependent modulation of vesicle-trafficking protein complexes.
Bean AJ, etal., J Biol Chem. 2000 May 19;275(20):15271-8.
Hrs-2, via interactions with SNAP-25, plays a regulatory role on the exocytic machinery. We now show that Hrs-2 physically interacts with Eps15, a protein required for receptor-mediated endocytosis. The Hrs-2/Eps15 interaction is calcium dependent, inhibited by SNAP-25 and alpha-adaptin, and results
in the inhibition of receptor-mediated endocytosis. Immunoelectron microscopy reveals Hrs-2 localization on the limiting membrane of multivesicular bodies, organelles in the endosomal pathway. These data show that Hrs-2 regulates endocytosis, delineate a biochemical pathway (Hrs-2-Eps15-AP2) in which Hrs-2 functions, and suggest that Hrs-2 acts to provide communication between endo- and exocytic processes.
Bean J, etal., Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20932-7. Epub 2007 Dec 18.
In human lung adenocarcinomas harboring EGFR mutations, a second-site point mutation that substitutes methionine for threonine at position 790 (T790M) is associated with approximately half of cases of acquired resistance to the EGFR kinase inhibitors, gefitinib and erlotinib. To identify other poten
tial mechanisms that contribute to disease progression, we used array-based comparative genomic hybridization (aCGH) to compare genomic profiles of EGFR mutant tumors from untreated patients with those from patients with acquired resistance. Among three loci demonstrating recurrent copy number alterations (CNAs) specific to the acquired resistance set, one contained the MET proto-oncogene. Collectively, analysis of tumor samples from multiple independent patient cohorts revealed that MET was amplified in tumors from 9 of 43 (21%) patients with acquired resistance but in only two tumors from 62 untreated patients (3%) (P = 0.007, Fisher's Exact test). Among 10 resistant tumors from the nine patients with MET amplification, 4 also harbored the EGFR(T790M) mutation. We also found that an existing EGFR mutant lung adenocarcinoma cell line, NCI-H820, harbors MET amplification in addition to a drug-sensitive EGFR mutation and the T790M change. Growth inhibition studies demonstrate that these cells are resistant to both erlotinib and an irreversible EGFR inhibitor (CL-387,785) but sensitive to a multikinase inhibitor (XL880) with potent activity against MET. Taken together, these data suggest that MET amplification occurs independently of EGFR(T790M) mutations and that MET may be a clinically relevant therapeutic target for some patients with acquired resistance to gefitinib or erlotinib.
Serum bilirubin levels have been associated with polymorphisms in the UGT1A1 promoter in normal populations and in patients with hemolytic anemias, including sickle cell anemia. When hemolysis occurs circulating heme increases, leading to elevated bilirubin levels and an increased incidence of cho
lelithiasis. We performed the first genome-wide association study (GWAS) of bilirubin levels and cholelithiasis risk in a discovery cohort of 1,117 sickle cell anemia patients. We found 15 single nucleotide polymorphisms (SNPs) associated with total bilirubin levels at the genome-wide significance level (p value <5 x 10(-8)). SNPs in UGT1A1, UGT1A3, UGT1A6, UGT1A8 and UGT1A10, different isoforms within the UGT1A locus, were identified (most significant rs887829, p = 9.08 x 10(-25)). All of these associations were validated in 4 independent sets of sickle cell anemia patients. We tested the association of the 15 SNPs with cholelithiasis in the discovery cohort and found a significant association (most significant p value 1.15 x 10(-4)). These results confirm that the UGT1A region is the major regulator of bilirubin metabolism in African Americans with sickle cell anemia, similar to what is observed in other ethnicities.
BACKGROUND: Outcomes for children with high-risk neuroblastoma are poor, and improved understanding of the mechanisms underlying neuroblastoma pathogenesis, recurrence, and treatment resistance will lead to improved outcomes. Aberrant growth factor receptor expression and receptor tyrosine kinase si
gnaling are associated with the pathogenesis of many malignancies. A germline polymorphism in the FGFR4 gene is associated with increased receptor expression and activity and with decreased survival, treatment resistance, and aggressive disease for many malignancies. We therefore investigated the role of this FGFR4 polymorphism in neuroblastoma pathogenesis. MATERIALS AND METHODS: Germline DNA from neuroblastoma patients and matched controls was assessed for the FGFR4 Gly/Arg388 polymorphism by RT-PCR. Allele frequencies were assessed for association with neuroblastoma patient outcomes and prognostic features. Degradation rates of the FGFR4 Arg388 and Gly388 receptors and rates of receptor internalization into the late endosomal compartment were measured. RESULTS: Frequency of the FGFR4 AA genotype and the prevalence of the A allele were significantly higher in patients with neuroblastoma than in matched controls. The Arg388 receptor demonstrated slower degradation than the Gly388 receptor in neuroblastoma cells and reduced internalization into multivesicular bodies. CONCLUSIONS: The FGFR4 Arg388 polymorphism is associated with an increased prevalence of neuroblastoma in children, and this association may be linked to differences in FGFR4 degradation rates. Our study provides the first evidence of a role for FGFR4 in neuroblastoma, suggesting that FGFR4 genotype and the pathways regulating FGFR4 trafficking and degradation may be relevant for neuroblastoma pathogenesis.
Characterizing heterozygous insertions or deletions in genes by PCR and Sanger sequencing can be a challenge due to overlapping sequencing traces produced by overlapping templates. This is particularly problematic for clinical diagnostic laboratories, because mutations must be precisely characterize
d. Although the mutation detection software used by clinical diagnostic laboratories reliably identifies small insertions and deletions, overlapping deletions and insertions on opposite chromosomes, complex rearrangements, and insertions or deletions close to the primer sites may be missed. Here we describe a rapid, simple method to confirm and precisely characterize deletions and insertions using a capillary-based gel electrophoresis system. This technique has been applied to a series of patients with deletion, duplication, or insertion mutations identified by sequencing, as well as to patients with repeat tract polymorphisms, to demonstrate the utility of this method.
Neoadjuvant chemotherapy is used in women who have large or locally advanced breast cancers. However, up to 70% of women who receive neoadjuvant chemotherapy fail to achieve a complete pathological response in their primary tumour (a surrogate marker of long-term survival). Five proteins, previousl
y identified to be linked with chemoresistance in our in vitro experiments, were identified histochemically in pre-treatment core needle biopsies from 40 women with large or locally advanced breast cancers. Immunohistochemical staining with the five proteins showed no single protein to be a predictor of response to chemotherapy. However, pre-treatment breast cancer specimens that were annexin-A2 positive but annexin-A1 negative correlated with a poor pathological response (p=0.04, Fisher's exact test). The mechanisms by which annexins confer chemoresistance have not been identified, but may be due to inhibition of apoptosis. Annexin-A1 has been shown to enhance apoptosis, whilst annexin-A2, by contrast, inhibits apoptosis.
Kumar A, etal., Hippocampus. 2015 Dec;25(12):1556-66. doi: 10.1002/hipo.22475. Epub 2015 Jun 12.
Estradiol rapidly modulates hippocampal synaptic plasticity and synaptic transmission; however, the contribution of the various estrogen receptors to rapid changes in synaptic function is unclear. This study examined the effect of estrogen receptor selective agonists on hippocampal synaptic transmi
ssion in slices obtained from 3-5-month-old wild type (WT), estrogen receptor alpha (ERalphaKO), and beta (ERbetaKO) knockout female ovariectomized mice. Hippocampal slices were prepared 10-16 days following ovariectomy and extracellular excitatory postsynaptic field potentials were recorded from CA3-CA1 synaptic contacts before and following application of 17beta-estradiol-3-benzoate (EB, 100 pM), the G-protein estrogen receptor 1 (GPER1) agonist G1 (100 nM), the ERalpha selective agonist propyl pyrazole triol (PPT, 100 nM), or the ERbeta selective agonist diarylpropionitrile (DPN, 1 microM). Across all groups, EB and G1 increased the synaptic response to a similar extent. Furthermore, prior G1 application occluded the EB-mediated enhancement of the synaptic response and the GPER1 antagonist, G15 (100 nM), inhibited the enhancement of the synaptic response induced by EB application. We confirmed that the ERalpha and ERbeta selective agonists (PPT and DPN) had effects on synaptic responses specific to animals that expressed the relevant receptor; however, PPT and DPN produced only a small increase in synaptic transmission relative to EB or the GPER1 agonist. We demonstrate that the increase in synaptic transmission is blocked by inhibition of extracellular signal-regulated kinase (ERK) activity. Furthermore, EB was able to increase ERK activity regardless of genotype. These results suggest that ERK activation and enhancement of synaptic transmission by EB involves multiple estrogen receptor subtypes.
We examine similar and differential effects of two senolytic treatments, ABT-263 and dasatinib + quercetin (D + Q), in preserving cognition, markers of peripheral senescence, and markers of brain aging thought to underlie cognitive decline. Male F344 rats were treated from 12 to 18 months of age wit
h D + Q, ABT-263, or vehicle, and were compared to young (6 months). Both senolytic treatments rescued memory, preserved the blood-brain barrier (BBB) integrity, and prevented the age-related decline in hippocampal N-methyl-D-aspartate receptor (NMDAR) function associated with impaired cognition. Senolytic treatments decreased senescence-associated secretory phenotype (SASP) and inflammatory cytokines/chemokines in the plasma (IL-1β, IP-10, and RANTES), with some markers more responsive to D + Q (TNFα) or ABT-263 (IFNγ, leptin, EGF). ABT-263 was more effective in decreasing senescence genes in the spleen. Both senolytic treatments decreased the expression of immune response and oxidative stress genes and increased the expression of synaptic genes in the dentate gyrus (DG). However, D + Q influenced twice as many genes as ABT-263. Relative to D + Q, the ABT-263 group exhibited increased expression of DG genes linked to cell death and negative regulation of apoptosis and microglial cell activation. Furthermore, D + Q was more effective at decreasing morphological markers of microglial activation. The results indicate that preserved cognition was associated with the removal of peripheral senescent cells, decreasing systemic inflammation that normally drives neuroinflammation, BBB breakdown, and impaired synaptic function. Dissimilarities associated with brain transcription indicate divergence in central mechanisms, possibly due to differential access.
Lee AW, etal., Gynecol Oncol. 2015 Mar;136(3):542-8. doi: 10.1016/j.ygyno.2014.12.017. Epub 2014 Dec 17.
OBJECTIVE: Ovarian cancer is a hormone-related disease with a strong genetic basis. However, none of its high-penetrance susceptibility genes and GWAS-identified variants to date are known to be involved in hormonal pathways. Given the hypothesized etiologic role of gonadotropins, an assessment of h
ow variability in genes involved in the gonadotropin signaling pathway impacts disease risk is warranted. METHODS: Genetic data from 41 ovarian cancer study sites were pooled and unconditional logistic regression was used to evaluate whether any of the 2185 SNPs from 11 gonadotropin signaling pathway genes was associated with ovarian cancer risk. A burden test using the admixture likelihood (AML) method was also used to evaluate gene-level associations. RESULTS: We did not find any genome-wide significant associations between individual SNPs and ovarian cancer risk. However, there was some suggestion of gene-level associations for four gonadotropin signaling pathway genes: INHBB (p=0.045, mucinous), LHCGR (p=0.046, high-grade serous), GNRH (p=0.041, high-grade serous), and FSHB (p=0.036, overall invasive). There was also suggestive evidence for INHA (p=0.060, overall invasive). CONCLUSIONS: Ovarian cancer studies have limited sample numbers, thus fewer genome-wide susceptibility alleles, with only modest associations, have been identified relative to breast and prostate cancers. We have evaluated the majority of ovarian cancer studies with biological samples, to our knowledge, leaving no opportunity for replication. Using both our understanding of biology and powerful gene-level tests, we have identified four putative ovarian cancer loci near INHBB, LHCGR, GNRH, and FSHB that warrant a second look if larger sample sizes and denser genotype chips become available.
The Wilms tumor suppressor WT1 encodes a zinc finger transcription factor that is expressed in glomerular podocytes during a narrow window in kidney development. By immunoprecipitation and protein microsequencing analysis, we have identified a major cellular protein associated with endogenous WT1 to
be the inducible chaperone Hsp70. WT1 and Hsp70 are physically associated in embryonic rat kidney cells, in primary Wilms tumor specimens and in cultured cells with inducible expression of WT1. Colocalization of WT1 and Hsp70 is evident within podocytes of the developing kidney, and Hsp70 is recruited to the characteristic subnuclear clusters that contain WT1. The amino-terminal transactivation domain of WT1 is required for binding to Hsp70, and expression of that domain itself is sufficient to induce expression of Hsp70 through the heat shock element (HSE). Substitution of a heterologous Hsp70-binding domain derived from human DNAJ is sufficient to restore the functional properties of a WT1 protein with an amino-terminal deletion, an effect that is abrogated by a point mutation in DNAJ that reduces binding to Hsp70. These observations indicate that Hsp70 is an important cofactor for the function of WT1, and suggest a potential role for this chaperone during kidney differentiation.
Gai X, etal., Am J Hum Genet. 2013 Sep 5;93(3):482-95. doi: 10.1016/j.ajhg.2013.07.016. Epub 2013 Aug 29.
Whole-exome sequencing and autozygosity mapping studies, independently performed in subjects with defective combined mitochondrial OXPHOS-enzyme deficiencies, identified a total of nine disease-segregating FBXL4 mutations in seven unrelated mitochondrial disease families, composed of six singletons
and three siblings. All subjects manifested early-onset lactic acidemia, hypotonia, and developmental delay caused by severe encephalomyopathy consistently associated with progressive cerebral atrophy and variable involvement of the white matter, deep gray nuclei, and brainstem structures. A wide range of other multisystem features were variably seen, including dysmorphism, skeletal abnormalities, poor growth, gastrointestinal dysmotility, renal tubular acidosis, seizures, and episodic metabolic failure. Mitochondrial respiratory chain deficiency was present in muscle or fibroblasts of all tested individuals, together with markedly reduced oxygen consumption rate and hyperfragmentation of the mitochondrial network in cultured cells. In muscle and fibroblasts from several subjects, substantially decreased mtDNA content was observed. FBXL4 is a member of the F-box family of proteins, some of which are involved in phosphorylation-dependent ubiquitination and/or G protein receptor coupling. We also demonstrate that FBXL4 is targeted to mitochondria and localizes in the intermembrane space, where it participates in an approximately 400 kDa protein complex. These data strongly support a role for FBXL4 in controlling bioenergetic homeostasis and mtDNA maintenance. FBXL4 mutations are a recurrent cause of mitochondrial encephalomyopathy onset in early infancy.
Carney AE, etal., Hum Mol Genet. 2009 May 1;18(9):1624-32. doi: 10.1093/hmg/ddp080. Epub 2009 Feb 18.
Duarte galactosemia is a mild to asymptomatic condition that results from partial impairment of galactose-1-phosphate uridylyltransferase (GALT). Patients with Duarte galactosemia demonstrate reduced GALT activity and carry one profoundly impaired GALT allele (G) along with a second, partially impai
red GALT allele (Duarte-2, D2). Molecular studies reveal at least five sequence changes on D2 alleles: a p.N314D missense substitution, three intronic base changes and a 4 bp deletion in the 5' proximal sequence. The four non-coding sequence changes are unique to D2. The p.N314D substitution, however, is not; it is found together with a silent polymorphism, p.L218(TTA), on functionally normal Duarte-1 alleles (D1, also called Los Angeles or LA alleles). The HapMap database reveals that p.N314D is a common human variant, and cross-species comparisons implicate D314 as the ancestral allele. The p.N314D substitution is also functionally neutral in mammalian cell and yeast expression studies. In contrast, the 4 bp 5' deletion characteristic of D2 alleles appears to be functionally impaired in reporter gene transfection studies. Here we present allele-specific qRT-PCR evidence that D2 alleles express less mRNA in vivo than their wild-type counterparts; the difference is small but statistically significant. Furthermore, we characterize the prevalence of the 4 bp deletion in GG, NN and DG populations; the deletion appears exclusive to D2 alleles. Combined, these data strongly implicate the 4 bp 5' deletion as a causal mutation in Duarte galactosemia and suggest that direct tests for this deletion, as proposed here, could enhance or supplant current tests, which define D2 alleles on the basis of the presence and absence of linked coding sequence polymorphisms.
Spatial and temporal alterations in intracellular calcium [Ca(2+)](i) play a pivotal role in a wide array of neuronal functions. Disruption in Ca(2+) homeostasis has been implicated in the decline in neuronal function in brain aging and in neurodegenerative disorders. The plasma membrane Ca(2+)-ATPa
se (PMCA) is a high affinity Ca(2+) transporter that plays a crucial role in the termination of [Ca(2+)](i) signals and in the maintenance of low [Ca(2+)](i) essential for signaling. Recent evidence indicates that PMCA is uniquely sensitive to its lipid environment and is stimulated by lipids with ordered acyl chains. Here we show that both PMCA and its activator calmodulin (CaM) are partitioned into liquid-ordered, cholesterol-rich plasma membrane microdomains or 'lipid rafts' in primary cultured neurons. Association of PMCA with rafts was demonstrated in preparations isolated by sucrose density gradient centrifugation and in intact neurons by confocal microscopy. Total raft-associated PMCA activity was much higher than the PMCA activity excluded from these microdomains. Depletion of cellular cholesterol dramatically inhibited the activity of the raft-associated PMCA with no effect on the activity of the non-raft pool. We propose that association of PMCA with rafts represents a novel mechanism for its regulation and, consequently, of Ca(2+) signaling in the central nervous system.
Beca F, etal., Mod Pathol. 2020 Aug;33(8):1518-1526. doi: 10.1038/s41379-020-0511-6. Epub 2020 Mar 2.
Angiosarcoma (AS) is the most frequent primary sarcoma of the breast but nevertheless remains uncommon, accounting for <0.05% of breast malignancies. Secondary mammary AS arise following radiation therapy for breast cancer, in contrast to primary AS which occur sporadically. Essentially all show agg
ressive clinical behavior independent of histologic grade and most are treated by mastectomy. MYC amplification is frequently identified in radiation-induced AS but only rarely in primary mammary AS (PMAS). As a heterogeneous group, AS from various anatomic sites have been shown to harbor recurrent alterations in TP53, MAP kinase pathway genes, and genes involved in angiogenic signaling including KDR (VEGFR2) and PTPRB. In part due to its rarity, the pathogenesis of PMAS has not been fully characterized. In this study, we examined the clinical, pathologic, and genomic features of ten cases of PMAS, including one patient with bilateral disease. Recurrent genomic alterations were identified in KDR (70%), PIK3CA/PIK3R1 (70%), and PTPRB (30%), each at higher frequencies than reported in AS across all sites. Six tumors harbored a KDR p.T771R hotspot mutation, and all seven KDR-mutant cases showed evidence suggestive of biallelism (four with loss of heterozygosity and three with two aberrations). Of the seven tumors with PI3K alterations, six harbored pathogenic mutations other than in the canonical PIK3CA residues which are most frequent in breast cancer. Three AS were hypermutated (>=10 mutations/megabase (Mb)); hypermutation was seen concurrent with KDR or PIK3CA mutations. The patient with bilateral disease demonstrated shared alterations, indicative of contralateral metastasis. No MYC or TP53 aberrations were detected in this series. Immunohistochemistry for VEGFR2 was unable to discriminate between KDR-mutant tumors and benign vascular lesions of the breast. These findings highlight the underrecognized frequency of KDR and PIK3CA mutation in PMAS, and a significant subset with hypermutation, suggesting a pathogenesis distinct from other AS.
Ting AE, etal., Proc Natl Acad Sci U S A 1995 Oct 10;92(21):9613-7.
Many of the molecules necessary for neurotransmission are homologous to proteins involved in the Golgi-to-plasma membrane stage of the yeast secretory pathway. Of 15 genes known to be essential for the later stages of vesicle trafficking in yeast, 7 have no identified mammalian homologs. These inclu
de the yeast SEC6, SEC8, and SEC15 genes, whose products are constituents of a 19.5S particle that interacts with the GTP-binding protein Sec4p. Here we report the sequences of rSec6 and rSec8, rat homologs of Sec6p and Sec8p. The rSec6 cDNA is predicted to encode an 87-kDa protein with 22% amino acid identity to Sec6p, and the rSec8 cDNA is predicted to encode a 110-kDa protein which is 20% identical to Sec8p. Northern blot analysis indicates that rSec6 and rSec8 are expressed in similar tissues. Immunodetection reveals that rSec8 is part of a soluble 17S particle in brain. COS cell cotransfection studies demonstrate that rSec8 colocalizes with the GTP-binding protein Rab3a and syntaxin 1a, two proteins involved in synaptic vesicle docking and fusion at the presynaptic terminal. These data suggest that rSec8 is a component of a high molecular weight complex which may participate in the regulation of vesicle docking and fusion in brain.
Yang CH, etal., J Clin Oncol. 2008 Jun 1;26(16):2745-53. doi: 10.1200/JCO.2007.15.6695.
PURPOSE: To explore predictive factors for time to treatment failure (TTF) in chemotherapy-naive non-small-cell lung cancer (NSCLC) patients receiving gefitinib treatment. PATIENTS AND METHODS: We designed a phase II study to test gefitinib antitumor efficacy in advanced-stage, chemotherapy-naive NS
CLC patients. Patients were treated with gefitinib 250 mg/d. Tumor assessments were performed every 2 months. Responding or stable patients were treated until progression or unacceptable toxicity. All scans were reviewed independently. EGFR exons 18-21 sequence, K-ras exon 2 sequence, and MET gene copy numbers were examined in available samples. Clinical or molecular predictors of TTF were examined by multivariate analysis. RESULTS: One hundred six patients were enrolled. Ninety patients had tumor samples for biomarker tests. Overall response rate was 50.9% (95% CI, 41.4% to 60.4%). Median TTF was 5.5 months, and median overall survival (OS) was 22.4 months. The response rate and median TTF of the patients with exon 19 deletion (n = 20) were 95.0% and 8.9 months, for exon 21 L858R mutation (n = 23) were 73.9% and 9.1 month, and for other types of EGFR mutations (N = 12) were 16.7% and 2.3 months, respectively. In multivariate analysis, the presence of EGFR deletion exon 19 or L858R EGFR mutations in adenocarcinoma patients predicted longer TTF. High copy number of MET seemed to correlate with shorter TTF in patients with gefitinib-sensitive activating EGFR mutations. CONCLUSION: In this prospective study, EGFR exon 19 deletion or L858R mutations in adenocarcinoma were the best predictors for longer TTF in stage IIIB/IV chemotherapy-naive NSCLC patients receiving first-line gefitinib monotherapy.
Harris SE, etal., J Biol Chem 1990 Jun 15;265(17):9896-903.
The gene encoding rat seminal vesicle secretion II (SVS II) protein has been cloned from a rat genomic DNA library using a cDNA probe generated from rat dorsal prostate androgen-dependent mRNA. The cloned 7.3-kilobase pair genomic fragment contains approximately 5000 base pairs (bp) of the 5'-flanki
ng region and the entire coding region of the SVS II protein within two exons. A sequence of 4156 bp of the rat SVS II gene has been determined, including 2037 bp of the 5'-flanking region, exon 1 (95 bp), intron 1 (236 bp), exon 2 (1171 bp), and 614 bp of the 3'-flanking region. The 5'-flanking region contains three conserved elements found in other seminal vesicle secretion genes (SVS IV-VI proteins) within 250 bp of the transcription start site as well as a glucocorticoid response element at position -314 in the SVS II gene. The first exon encodes a 22-amino acid leader peptide plus the first 2 amino acids of the secreted protein. The second exon encodes the remaining amino acids in the SVS II protein sequence. The mature protein contains 392 residues and has an Mr of 43,116. Concomitant with the gene analysis, the rat SVS II protein was purified to homogeneity, and 333 residues (85%) of the amino acid sequence were determined by automated Edman degradation. The DNA-deduced sequence and that determined by direct analysis of the protein are in complete agreement. The blocked NH2-terminal amino acid was identified as pyroglutamic acid by mass spectrometry and aminopeptidase digestion. A 13-residue structure with the consensus sequence GSQLKSFGQVKSS is repeated 13 times within the SVS II protein and appears to be involved in the formation of the rat copulatory plug via a transglutaminase reaction cross-linking glutamine and lysine residues. Overall, the SVS II protein sequence exhibits little structural relatedness to any other known protein sequence; however, some similarity can be found between the 13-residue repeat and another repeating structure and apparent transglutaminase substrate in the guinea pig seminal vesicle clotting protein.
Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer mortality in American women. Normal ovarian physiology is intricately connected to small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran) which govern processes such as signal transduction, cell proliferati
on, cell motility, and vesicle transport. We hypothesized that common germline variation in genes encoding small GTPases is associated with EOC risk. We investigated 322 variants in 88 small GTPase genes in germline DNA of 18,736 EOC patients and 26,138 controls of European ancestry using a custom genotype array and logistic regression fitting log-additive models. Functional annotation was used to identify biofeatures and expression quantitative trait loci that intersect with risk variants. One variant, ARHGEF10L (Rho guanine nucleotide exchange factor 10 like) rs2256787, was associated with increased endometrioid EOC risk (OR = 1.33, p = 4.46 x 10-6). Other variants of interest included another in ARHGEF10L, rs10788679, which was associated with invasive serous EOC risk (OR = 1.07, p = 0.00026) and two variants in AKAP6 (A-kinase anchoring protein 6) which were associated with risk of invasive EOC (rs1955513, OR = 0.90, p = 0.00033; rs927062, OR = 0.94, p = 0.00059). Functional annotation revealed that the two ARHGEF10L variants were located in super-enhancer regions and that AKAP6 rs927062 was associated with expression of GTPase gene ARHGAP5 (Rho GTPase activating protein 5). Inherited variants in ARHGEF10L and AKAP6, with potential transcriptional regulatory function and association with EOC risk, warrant investigation in independent EOC study populations.
Zihlif M, etal., Genet Test Mol Biomarkers. 2016 Mar;20(3):143-8. doi: 10.1089/gtmb.2015.0174. Epub 2016 Feb 17.
INTRODUCTION: Gasdermin A (GSDMA) and gasdermin B (GSDMB) have been associated with childhood, and to a lesser extent with adult, asthma in many populations. AIMS: In this study, we investigated the association between GSDMA and GSDMB variants and the incidence of adult and chil
dhood asthma among Jordanians. METHODS: Subjects were divided into two groups: adults and children. Within the adult group there were 129 asthma patients and 111 healthy controls. In the pediatric group there were 98 asthma patients and 112 healthy children. Gasdermin A (GSDMA) (rs7212938, T/G) and Gasdermin B (rs7216389, T/C) polymorphisms were genotyped using the PCR-RFLP method. Three analysis models were applied to the genotype data: co-dominant, dominant and recessive. RESULTS: An association between the GSDMB T/C single nucleotide polymorphism (SNP) genotype and the incidence of childhood asthma was found (< 0.05). GSDMB T/C SNP in children also showed a very high tendency toward significance with p = 0.0532 in the single locus analysis. In adults, no significant differences in the allelic frequencies of any of the SNPs analyzed were found between the case and control populations. At the haplotype level, GC haplotype was found to be associated with the risk of asthma in children while none of the tested haplotypes were found to be associated with asthma risk in adults. CONCLUSIONS: The findings of this study confirm the previously reported association between the GSDMB gene and the risk of childhood asthma.
Prodynorphin mRNA and immunoreactive dynorphin A (ir-dynorphin A) levels were measured in different brain areas at various time points after amygdala kindled seizures. In the hippocampus, striatum and hypothalamus, prodynorphin mRNA levels were not significantly changed in kindled rats (killed 1 wee
k after the last stimulus-evoked seizure), but they were significantly increased 1 h after seizures. The relative increase was the highest in the hippocampus (approximately 3-fold). In the brainstem, midbrain and cerebral cortex no changes in prodynorphin mRNA were detected in kindled rats, 1 h or 1 week after a kindled seizure. ir-Dynorphin A levels were significantly reduced in the hippocampus and in the striatum of kindled rats, as well as 5 and 60 min after kindled seizures, but they were increased back to control levels after 120 min. In the hypothalamus, ir-dynorphin A levels were significantly increased 120 min after a kindled seizure. ir-Dynorphin A levels were also significantly reduced in the brainstem and in the frontal, parietal and temporal cortex 120 min, but not 5 or 60 min, after a kindled seizure. Taken together, these data support the hypothesis that the dynorphinergic system is activated after amygdala kindled seizures, with different kinetics in different brain areas.
Spira A, etal., Am J Respir Cell Mol Biol 2004 Dec;31(6):601-10. Epub .
The mechanism by which inhaled smoke causes the anatomic lesions and physiologic impairment of chronic obstructive pulmonary disease remains unknown. We used high-density microarrays to measure gene expression in severely emphysematous lung tissue removed from smokers at lung volume reduction surger
y (LVRS) and normal or mildly emphysematous lung tissue from smokers undergoing resection of pulmonary nodules. Class prediction algorithms identified 102 genes that accurately distinguished severe emphysema from non-/mildly emphysematous lung tissue. We also defined a number of genes whose expression levels correlated strongly with lung diffusion capacity for carbon monoxide and/or forced expiratory volume at 1 s. Genes related to oxidative stress, extracellular matrix synthesis, and inflammation were increased in severe emphysema, whereas expression of endothelium-related genes was decreased. To identify candidate genes that might be causally involved in the pathogenesis of emphysema, we linked gene expression profiles to chromosomal regions previously associated with chronic obstructive pulmonary disease in genome-wide linkage analyses. Unsupervised hierarchical clustering of the LVRS samples revealed distinct molecular subclasses of severe emphysema, with body mass index as the only clinical variable that differed between the groups. Class prediction models established a set of genes that predicted functional outcome at 6 mo after LVRS. Our findings suggest that the gene expression profiles from human emphysematous lung tissue may provide insight into pathogenesis, uncover novel molecular subclasses of disease, predict response to LVRS, and identify targets for therapeutic intervention.
Pan JH, etal., Nutrients. 2018 May 27;10(6). pii: nu10060679. doi: 10.3390/nu10060679.
Fructose is a strong risk factor for non-alcoholic fatty liver disease (NAFLD), resulting from the disruption of redox systems by excessive reactive oxygen species production in the liver cells. Of note, recent epidemiological studies indicated that women are more prone to developing metabolic syndr
ome in response to fructose-sweetened beverages. Hence, we examined whether disruption of the redox system through a deletion of NADPH supplying mitochondrial enzyme, NADP⁺-dependent isocitrate dehydrogenase (IDH2), exacerbates fructose-induced NAFLD conditions in C57BL/6 female mice. Wild-type (WT) and IDH2 knockout (KO) mice were treated with either water or 34% fructose water over six weeks. NAFLD phenotypes and key proteins and mRNAs involved in the inflammatory pathway (e.g., NF-κB p65 and IL-1β) were assessed. Hepatic lipid accumulation was significantly increased in IDH2 KO mice fed fructose compared to the WT counterpart. Neutrophil infiltration was observed only in IDH2 KO mice fed fructose. Furthermore, phosphorylation of NF-κB p65 and expression of IL-1β was remarkably upregulated in IDH2 KO mice fed fructose, and expression of IκBα was decreased by fructose treatment in both WT and IDH2 KO groups. For the first time, we report our novel findings that IDH2 KO female mice may be more susceptible to fructose-induced NAFLD and the associated inflammatory response, suggesting a mechanistic role of IDH2 in metabolic diseases.
Demeo DL, etal., Am J Hum Genet. 2006 Feb;78(2):253-64. doi: 10.1086/499828. Epub 2005 Dec 15.
Chronic obstructive pulmonary disease (COPD) is a complex human disease likely influenced by multiple genes, cigarette smoking, and gene-by-smoking interactions, but only severe alpha 1-antitrypsin deficiency is a proven genetic risk factor for COPD. Prior linkage analyses in the Boston Early-Onset
COPD Study have demonstrated significant linkage to a key intermediate phenotype of COPD on chromosome 2q. We integrated results from murine lung development and human COPD gene-expression microarray studies with human COPD linkage results on chromosome 2q to prioritize candidate-gene selection, thus identifying SERPINE2 as a positional candidate susceptibility gene for COPD. Immunohistochemistry demonstrated expression of serpine2 protein in mouse and human adult lung tissue. In family-based association testing of 127 severe, early-onset COPD pedigrees from the Boston Early-Onset COPD Study, we observed significant association with COPD phenotypes and 18 single-nucleotide polymorphisms (SNPs) in the SERPINE2 gene. Association of five of these SNPs with COPD was replicated in a case-control analysis, with cases from the National Emphysema Treatment Trial and controls from the Normative Aging Study. Family-based and case-control haplotype analyses supported similar regions of association within the SERPINE2 gene. When significantly associated SNPs in these haplotypic regions were included as covariates in linkage models, LOD score attenuation was observed most markedly in a smokers-only linkage model (LOD 4.41, attenuated to 1.74). After the integration of murine and human microarray data to inform candidate-gene selection, we observed significant family-based association and independent replication of association in a case-control study, suggesting that SERPINE2 is a COPD-susceptibility gene and is likely influenced by gene-by-smoking interaction.
Previously, we reported NELL-1 as a novel molecule overexpressed during premature cranial suture closure in patients with craniosynostosis (CS), one of the most common congenital craniofacial deformities. Here we describe the creation and analysis of transgenic mice overexpressing Nell-1. Nell-1 tra
nsgenic animals exhibited CS-like phenotypes that ranged from simple to compound synostoses. Histologically, the osteogenic fronts of abnormally closing/closed sutures in these animals revealed calvarial overgrowth and overlap along with increased osteoblast differentiation and reduced cell proliferation. Furthermore, anomalies were restricted to calvarial bone, despite generalized, non-tissue-specific overexpression of Nell-1. In vitro, Nell-1 overexpression accelerated calvarial osteoblast differentiation and mineralization under normal culture conditions. Moreover, Nell-1 overexpression in osteoblasts was sufficient to promote alkaline phosphatase expression and micronodule formation. Conversely, downregulation of Nell-1 inhibited osteoblast differentiation in vitro. In summary, Nell-1 overexpression induced calvarial overgrowth resulting in premature suture closure in a rodent model. Nell-1, therefore, has a novel role in CS development, perhaps as part of a complex chain of events resulting in premature suture closure. On a cellular level, Nell-1 expression may modulate and be both sufficient and required for osteoblast differentiation.
Soo C, etal., Am J Pathol. 2000 Aug;157(2):423-33.
Transforming growth factor-beta (TGF-beta1, -beta2, and -beta3) has been implicated in the ontogenetic transition from scarless fetal repair to adult repair with scar. Generally, TGF-beta exerts its effects through type I and II receptors; however, TGF-beta modulators such as latent TGF-beta binding
protein-1 (LTBP-1), decorin, biglycan, and fibromodulin can bind and potentially inhibit TGF-beta activity. To more fully explore the role of TGF-beta ligands, receptors, and potential modulators during skin development and wound healing, we have used a rat model that transitions from scarless fetal-type repair to adult-type repair with scar between days 16 and 18 of gestation. We showed that TGF-beta ligand and receptor mRNA levels did not increase during the transition to adult-type repair in fetal skin, whereas LTBP-1 and fibromodulin expression decreased. In addition, TGF-beta1 and -beta3; type I, II, and III receptors; as well as LTBP-1, decorin, and biglycan were up-regulated during adult wound healing. In marked contrast, fibromodulin expression was initially down-regulated in adult repair. Immunostaining demonstrated significant fibromodulin induction 36 hours after injury in gestation day 16, but not day 19, fetal wounds. This inverse relationship between fibromodulin expression and scarring in both fetal and adult rat wound repair suggests that fibromodulin may be a biologically relevant modulator of TGF-beta activity during scar formation.
Shahid SU, etal., Atherosclerosis. 2017 Mar;258:1-7. doi: 10.1016/j.atherosclerosis.2017.01.024. Epub 2017 Jan 22.
BACKGROUND AND AIMS: Conventional coronary artery disease (CAD) risk factors like age, gender, blood lipids, hypertension and smoking have been the basis of CAD risk prediction algorithms, but provide only modest discrimination. Genetic risk score (GRS) may provide improved discrimination
over and above conventional risk factors. Here we analyzed the genetic risk of CAD in subjects from Pakistan, using a GRS of 21 variants in 18 genes and examined whether the GRS is associated with blood lipid levels. METHODS: 625 (405 cases and 220 controls) subjects were genotyped for variants, NOS3 rs1799983, SMAD3 rs17228212, APOB rs1042031, LPA rs3798220, LPA rs10455872, SORT1 rs646776, APOE rs429358, GLUL rs10911021, FTO rs9939609, MIA3 rs17465637, CDKN2Ars10757274, DAB2IP rs7025486, CXCL12 rs1746048, ACE rs4341, APOA5 rs662799, CETP rs708272, MRAS rs9818870, LPL rs328, LPL rs1801177, PCSK9 rs11591147 and APOE rs7412 by TaqMan and KASPar allele discrimination techniques. RESULTS: Individually, the single SNPs were not associated with CAD except APOB rs1042031 and FTO rs993969 (p = 0.01 and 0.009 respectively). However, the combined GRS of 21 SNPs was significantly higher in cases than controls (19.37 ± 2.56 vs. 18.47 ± 2.45, p = 2.9 × 10-5), and compared to the bottom quintile, CAD risk in the top quintile of the GRS was 2.96 (95% CI 1.71-5.13). Atherogenic blood lipids showed significant positive association with GRS. CONCLUSIONS: The GRS was quantitatively associated with CAD risk and showed association with blood lipid levels, suggesting that the mechanism of these variants is likely to be, in part at least, through creating an atherogenic lipid profile in subjects carrying high numbers of risk alleles.
Effective methods to identify novel genes in complicated dynamic tissue processes are needed in molecular biology research. Traditional techniques primarily target known genes and are inefficient in the pursuit of unknown genes. Here we describe the use of a modified differential display polymerase
chain reaction (DD-PCR) protocol for the identification of genes differentially expressed in wound healing. Full-thickness dorsal wounds were made on 35 adult rats, followed by wound harvest at 12 hours, 24 hours, 3 days, 5 days, 7 days, 10 days, and 14 days after injury. Modified DD-PCR was performed and gene fragments displaying definite changes during wound healing were cloned and sequenced. Gene fragments from DD-PCR were compared with available gene bank database sequences. Specific primer PCR was used to confirm DD-PCR expression patterns. As a result, over 1000 gene fragments were amplified by DD-PCR, 35 of which demonstrated distinct differences during repair. Cloning and sequencing of 13 of these gene fragments revealed that some were homologous to several characterized genes with previously unsuspected roles in repair, whereas others were completely novel genes with no known function. Specific primer PCR further confirmed expression of six of these 13 gene fragments. Only one of the 13 cloned fragments, later identified as interleukin-1beta, had well-recognized associations with tissue injury. Other fragments corresponded to various genes involved in cellular processes such as differentiation, proliferation, exocytosis, and myofibril assembly. No prior studies have linked them to wound healing. We have demonstrated that modified DD-PCR can be used to effectively identify novel genes differentially expressed during repair. Because DD-PCR allows for the simultaneous amplification of multiple arbitrary transcripts, it is a powerful genetic screening tool for complicated dynamic tissue processes, particularly when multiple, limited-sized samples are involved.
BACKGROUND: The cardiac PRKAG2 mutation in the gamma2-subunit of adenosine monophosphate activated kinase (AMPK) is characterized by excessive glycogen deposition, hypertrophy, frequent arrhythmias, and progressive conduction system disease. We investigated whether myocardial glucose uptake (MGU) w
as augmented following insulin stimulation in a mouse model of the PRKAG2 cardiac syndrome. METHODS: Myocardial and skeletal muscle glucose uptake was assessed with 2-[18F]fluoro-2-deoxyglucose positron emission tomography imaging in n = 3 transgenic wildtype (TGwt) vs n = 7 PRKAG2 mutant (TGmut) mice at baseline and 1 week later, 30 min following acute insulin. Systolic function, cardiac glycogen stores, phospho-AMPK alpha, and insulin-receptor expression levels were analyzed to corroborate to the in vivo findings. RESULTS: TGmut Patlak Ki was reduced 56% at baseline compared to TGwt (0.3 +/- 0.2 vs 0.7 +/- 0.1, t test p = 0.01). MGU was augmented 71% in TGwt mice following acute insulin from baseline (0.7 +/- 0.1 to 1.2 +/- 0.2, t test p < 0.05). No change was observed in TGmut mice. As expected for this cardiac specific transgene, skeletal muscle was unaffected at baseline with a 33% to 38% increase (standard uptake values) for both genotypes following insulin stimulation. TGmut mice had a 47% reduction in systolic function with a fourfold increase in cardiac glycogen stores correlated with a 29% reduction in phospho-AMPK alpha levels. There was no difference in cardiac insulin receptor expression between mouse genotypes. CONCLUSIONS: These results demonstrate a correlation between insulin resistance and AMPK activity and provide the basis for the use of this animal model for assessing metabolic therapy in the treatment of affected PRKAG2 patients.
Thackeray JT, etal., Nucl Med Biol. 2011 Oct;38(7):1059-66. Epub 2011 Aug 9.
INTRODUCTION: Abnormal sympathetic nervous system and beta-adrenoceptor (beta-AR) signaling is associated with diabetes. [(3)H]CGP12177 is a nonselective beta-AR antagonist that can be labeled with carbon-11 for positron emission tomography. The aim of this study was to examine the suitability of th
is tracer for evaluation of altered beta-AR expression in diabetic rat hearts. METHODS: Ex vivo biodistribution with [(3)H]CGP12177 was carried out in normal Sprague-Dawley rats for evaluation of specific binding and response to continuous beta-AR stimulation by isoproterenol. In a separate group, high-fat-diet feeding imparted insulin resistance and a single intraperitoneal injection of streptozotocin (STZ) or vehicle evoked hyperglycemia (blood glucose >11 mM). [(3)H]CGP12177 biodistribution was assessed at 2 and 8 weeks post-STZ to measure beta-AR binding in heart, 30 min following tracer injection. Western blotting of beta-AR subtypes was completed in parallel. RESULTS: Infusion of isoproterenol over 14 days did not affect cardiac binding of [(3)H]CGP12177. Approximately half of rats treated with STZ exhibited sustained hyperglycemia and progressive hypoinsulinemia. Myocardial [(3)H]CGP12177 specific binding was unchanged at 2 weeks post-STZ but significantly reduced by 30%-40% at 8 weeks in hyperglycemic but not euglycemic STZ-treated rats compared with vehicle-treated controls. Western blots supported a significant decrease in beta(1)-AR in hyperglycemic rats. CONCLUSIONS: Reduced cardiac [(3)H]CGP12177 specific binding in the presence of sustained hyperglycemia corresponds to a decrease in relative beta(1)-AR expression. These data indirectly support the use of [(11)C]CGP12177 for assessment of cardiac dysfunction in diabetes.
Red kidney bean (Phaseolus vulgaris L.) is one the most commonly consumed legumes that requires an in depth understanding of its allergenicity. Therefore, the aim of this study was to explore the allergenicity of red kidney bean
pan> proteins following oral exposure in BALB/c mice and elucidate the levels of Th1/Th2 transcription factors induced by red kidney bean proteins in rat basophilic leukemia cells (RBL-2H3 cells) passively sensitized with the sera of red kidney bean sensitized mice. Red kidney bean proteins showed enhanced levels of total and specific IgE, anaphylactic symptoms, thymic stromal lymphopoietin (TSLP) and peritoneal albumin over control. Enhanced release of β-hexosaminidase along with up regulated expressions of GATA-3, STAT-6, T-bet, c-MAF and NFAT were observed in the RBL-2H3 cells exposed with red kidney bean proteins when compared to that of the controls. Taken together, exposure of red kidney bean proteins may cause allergic symptoms in mice and the ambivalent effect on Th2/Th1 transcription factors in RBL-2H3 cells.
Seo HS, etal., J Agric Food Chem. 2008 Jun 25;56(12):4665-73. Epub 2008 Jun 3.
The aim of this study was 2-fold: (i) to demonstrate influences of roasted coffee bean aroma on rat brain functions by using the transcriptomics and proteomics approaches and (ii) to evaluate the impact of roasted coffee bean
> aroma on stress induced by sleep deprivation. The aroma of the roasted coffee beans was administered to four groups of adult male Wistar rats: 1, control group; 2, 24 h sleep deprivation-induced stress group (the stress group); 3, coffee aroma-exposed group without stress (the coffee group); and 4, the stress with coffee aroma group (the stress with coffee group). Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of some known genes responsive to aroma or stress was performed using total RNA from these four groups. A total of 17 selected genes of the coffee were differently expressed over the control. Additionally, the expression levels of 13 genes were different between the stress group and the stress with coffee group: Up-regulation was found for 11 genes, and down-regulation was seen for two genes in the stress with coffee group. We also looked to changes in protein profiles in these four samples using two-dimensional (2D) gel electrophoresis; 25 differently expressed gel spots were detected on 2D gels stained by silver nitrate. Out of these, a total of nine proteins were identified by mass spectrometry. Identified proteins belonged to five functional categories: antioxidant; protein fate; cell rescue, defense, and virulence; cellular communication/signal transduction mechanism; and energy metabolism. Among the differentially expressed genes and proteins between the stress and the stress with coffee group, NGFR, trkC, GIR, thiol-specific antioxidant protein, and heat shock 70 kDa protein 5 are known to have antioxidant or antistress functions. In conclusion, the roasted coffee bean aroma changes the mRNA and protein expression levels of the rat brain, providing for the first time clues to the potential antioxidant or stress relaxation activities of the coffee bean aroma.
Kumar S, etal., Int Immunopharmacol. 2014 Mar;19(1):178-90. doi: 10.1016/j.intimp.2014.01.014. Epub 2014 Jan 24.
Red kidney bean (Phaseolus vulgaris L.), a protein rich legume, is consumed globally due to its delicacy. This study was aimed to purify, characterize and assess allergenicity of one of its clinically relevant allergens, later identified as phaseolin. This study
was carried out using clinical, in vivo and ex vivo approaches. Phaseolin, an abundant protein of red kidney bean, was purified by column chromatography and reverse-phase-HPLC techniques and characterized by peptide mass fingerprinting. The IgE immunoblotting using red kidney bean allergic patients sera showed phaseolin as a major IgE binding protein of red kidney bean. Phaseolin treated mice demonstrated enhanced levels of specific IgE and IgG1, mouse mast cell protease-1, mRNA expressions of IL-4, IL-5, IL-13 and GATA-3 in the lungs, spleen and intestine along with anaphylactic symptoms indicative of allergic responses. Further, flow cytometry analysis and immunohistochemical studies indicated increased levels of IL-4, IL-5, IL-13 and GATA-3, respectively as compared to controls. The level of Foxp3 was found suppressed in the intestine of phaseolin treated mice when compared to the control. Further, phaseolin treated mice showed positive results in type 1 skin test. Bone marrow derived mast cells (BMMCs) and rat basophilic leukemia (RBL-2H3) cells showed enhanced release of allergic mediators like beta-hexosaminidase, histamine, cysteinyl leukotrienes and prostaglandin D2. Taken together, phaseolin was found to possess characteristics of a potential allergen that may lead to hypersensitivity responses in the susceptible individuals and this may be one of the major proteins responsible for allergenicity of red kidney bean.
Fung SY, etal., Indian J Exp Biol. 2014 Sep;52(9):849-59.
Mucuna pruriens is widely used in traditional medicine for treatments of various diseases. In certain region of Nigeria, the seed is used as oral prophylactics for snakebite. Rats pretreated with the aqueous extract from M. pruriens seed (MPE) were protected against the lethal effects of Naja sputat
rix (Javan spitting cobra) venom [Tan et al., J Ethnopharmacol, 123 (2009) 356]. The pretreatment also protected against venom-induced histopathological changes in rat heart. To contribute to the understanding of the mechanism of cardio-protective action, the present study examined the effects of MPE-pretreatment on gene expression profile of rat heart as well as effect of MPE-pretreatment on N. sputatrix venom-induced gene expression alterations in rat heart. The gene expression profiles were examined by microarray analysis and verified by real time PCR. The results showed that pretreatment with MPE caused 50 genes in the rat heart substantially up-regulated of which 19 were related to immune responses, 7 were related to energy production and metabolism. The up-regulation of genes related to energy metabolism probably plays a role in maintaining the viability of the heart. Four other genes that were up-regulated (alpha synuclein, natriuretic peptide precursor, calsequestrin and triadin) were involved in the maintenance of homeostasis of the heart or maintaining its viability, thereby contributing to the direct protective action. The results demonstrated that protective effect of MPE pretreatment against snake venom poisoning may involve a direct action on the heart.
Damián-Medina K, etal., Front Nutr. 2022 Nov 14;9:1019259. doi: 10.3389/fnut.2022.1019259. eCollection 2022.
Black beans (BB) are an important source of a range of plant bioactive compounds including polyphenols, particularly anthocyanins. Several studies support that consumption of BB is associated with health benefits, including prevention of type 2 diabetes mellitus
(T2DM). However, molecular mechanisms underlying the potential health properties of BB on adipose tissue (AT) are still largely unknown. The purpose of this study was to investigate multi-genomic effects of BB intake and identify regulatory networks potentially mediating T2DM on AT. Male Wistar diabetic rats consumed an anthocyanin-rich black bean extract for 5 weeks. Global gene expression from AT, protein coding and non-coding RNA profiles were determined using RNAseq. Biological function analyses were performed using a variety of bioinformatic tools. The evaluation of global gene expression profiles exhibited significant change following BB consumption with 406 significantly differentially expressed genes, 33 miRNA and 39 lncRNA and 3 snRNA. Functional analyses indicated that these genes play an important role in regulation of PI3K signaling, NIN/NF-kB signaling, insulin secretion, and endoplasmic reticulum (ER) organization. Interestingly, transcription factors such as GATA2, or POU2AF1 demonstrated to modulate their activity by BB extract by direct interaction with polyphenol metabolites, or by interactions with cell signaling proteins, like PKB, AKT or PI3K, that could control transcription factor activity and as a result impact on adipogenesis regulation. Therefore, the constant consumption of an anthocyanin-rich black bean extract may have anti-diabetic protective effects by modulating gene expression, resulting in a promising alternative for T2DM patients.