Bardet-Biedl syndrome (BBS, MIM 209900) is a heterogeneous autosomal recessive disorder characterized by obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation, and hypogenitalism. The disorder is also associated with diabetes mellitus, hypertension, and congenital hea
rt disease. Six distinct BBS loci map to 11q13 (BBS1), 16q21 (BBS2), 3p13-p12 (BBS3), 15q22.3-q23 (BBS4), 2q31 (BBS5), and 20p12 (BBS6). Although BBS is rare in the general population (<1/100,000), there is considerable interest in identifying the genes causing BBS because components of the phenotype, such as obesity and diabetes, are common. We and others have demonstrated that BBS6 is caused by mutations in the gene MKKS (refs. 12,13), mutation of which also causes McKusick-Kaufman syndrome (hydrometrocolpos, post-axial polydactyly, and congenital heart defects). MKKS has sequence homology to the alpha subunit of a prokaryotic chaperonin in the thermosome Thermoplasma acidophilum. We recently identified a novel gene that causes BBS2. The BBS2 protein has no significant similarity to other chaperonins or known proteins. Here we report the positional cloning and identification of mutations in BBS patients in a novel gene designated BBS4.
Iannaccone A, etal., Am J Med Genet A. 2005 Feb 1;132A(4):343-6. doi: 10.1002/ajmg.a.30512.
Recent discoveries have lead to the hypothesis that ciliary dysfunction is a mechanism underlying the pathogenesis of Bardet-Biedl syndrome (BBS). Here, we describe two individuals with decreased olfaction who are members of an extended family affected with BBS caused by a homozygous deletion (c.77-
220del) in the BBS4 gene. These findings correlate with the evidence that several BBS proteins, including BBS4, are expressed in the olfactory epithelium (OE). Although the prevalence and the spectrum of impaired olfaction in BBS are not known, the causal relationship of the BBS4 deletion in this family and the decreased olfaction is corroborated by evidence that Bbs2 and Bbs4 knockout mice have severe olfaction deficits and that also patients with BBS caused by mutations in other BBS genes can have impaired olfaction. This finding broadens the spectrum of clinical manifestations associated with BBS, confirms the role of BBS4 in olfaction, and lends support to the hypothesis that ciliary dysfunction is an important aspect of BBS pathogenesis.
Kamiya A, etal., Arch Gen Psychiatry. 2008 Sep;65(9):996-1006. doi: 10.1001/archpsyc.65.9.996.
CONTEXT: A role for the centrosome has been suggested in the pathology of major mental illnesses, especially schizophrenia (SZ). OBJECTIVES: To show that pericentriolar material 1 protein (PCM1) forms a complex at the centrosome with disrupted-in-schizophrenia 1 (DISC1) and Bardet-Biedl syndrome 4 p
rotein (BBS4), which provides a crucial pathway for cortical development associated with the pathology of SZ. To identify mutations in the PCM1 gene in an SZ population. DESIGN: Interaction of DISC1, PCM1, and BBS proteins was assessed by immunofluorescent staining and coimmunoprecipitation. Effects of PCM1, DISC1, and BBS on centrosomal functions and corticogenesis in vivo were tested by RNA interference. The PCM1 gene was examined by sequencing 39 exons and flanking splice sites. SETTING: Probands and controls were from the collection of one of us (A.E.P.). PATIENTS: Thirty-two probands with SZ from families that had excess allele sharing among affected individuals at 8p22 and 219 white controls. MAIN OUTCOME MEASURES: Protein interaction and recruitment at the centrosome in cells; neuronal migration in the cerebral cortex; and variant discovery in PCM1 in patients with SZ. RESULTS: PCM1 forms a complex with DISC1 and BBS4 through discrete binding domains in each protein. DISC1 and BBS4 are required for targeting PCM1 and other cargo proteins, such as ninein, to the centrosome in a synergistic manner. In the developing cerebral cortex, suppression of PCM1 leads to neuronal migration defects, which are phenocopied by the suppression of either DISC1 or BBS4 and are exacerbated by the concomitant suppression of both. Furthermore, a nonsense mutation that segregates with SZ spectrum psychosis was found in 1 family. CONCLUSIONS: Our data further support for the role of centrosomal proteins in cortical development and suggest that perturbation of centrosomal function contributes to the development of mental diseases, including SZ.
BBS4 is one of several proteins that cause Bardet-Biedl syndrome (BBS), a multisystemic disorder of genetic and clinical complexity. Here we show that BBS4 localizes to the centriolar satellites of centrosomes and basal bodi
es of primary cilia, where it functions as an adaptor of the p150(glued) subunit of the dynein transport machinery to recruit PCM1 (pericentriolar material 1 protein) and its associated cargo to the satellites. Silencing of BBS4 induces PCM1 mislocalization and concomitant deanchoring of centrosomal microtubules, arrest in cell division and apoptotic cell death. Expression of two truncated forms of BBS4 that are similar to those found in some individuals with BBS had a similar effect on PCM1 and microtubules. Our findings indicate that defective targeting or anchoring of pericentriolar proteins and microtubule disorganization contribute to the BBS phenotype and provide new insights into possible causes of familial obesity, diabetes and retinal degeneration.