| 11352984 | IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders. | Kang J, etal., Neuropharmacology. 2016 Jan;100:27-39. doi: 10.1016/j.neuropharm.2015.06.019. Epub 2015 Aug 12. | IRSp53 (also known as BAIAP2) is a multi-domain scaffolding and adaptor protein that has been implicated in the regulation of membrane and actin dynamics at subcellular structures, including filopodia and lamellipodia. Accumulating evidence indicates that IRSp53 is an abundant component of the postsynaptic density at excitatory synapses and an important regulator of actin-rich dendritic spines. In addition, IRSp53 has been implicated in diverse psychiatric disorders, including autism spectrum disorders, schizophrenia, and attention deficit/hyperactivity disorder. Mice lacking IRSp53 display enhanced NMDA (N-methyl-d-aspartate) receptor function accompanied by social and cognitive deficits, which are reversed by pharmacological suppression of NMDA receptor function. These results suggest the hypothesis that defective actin/membrane modulation in IRSp53-deficient dendritic spines may lead to social and cognitive deficits through NMDA receptor dysfunction. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. | 26275848 | 2016-07-01 |
| 11576292 | Association study of six candidate genes asymmetrically expressed in the two cerebral hemispheres suggests the involvement of BAIAP2 in autism. | Toma C, etal., J Psychiatr Res. 2011 Feb;45(2):280-2. doi: 10.1016/j.jpsychires.2010.09.001. | | 20888579 | 2011-02-01 |
| 11576297 | BAIAP2 exhibits association to childhood ADHD especially predominantly inattentive subtype in Chinese Han subjects. | Liu L, etal., Behav Brain Funct. 2013 Dec 30;9:48. doi: 10.1186/1744-9081-9-48. | BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a common chronic neurodevelopmental disorder with a high heritability. Much evidence of hemisphere asymmetry has been found for ADHD probands from behavioral level, electrophysiological level and brain morphology. One previous research has reported possible association between BAIAP2, which is asymmetrically expressed in the two cerebral hemispheres, with ADHD in European population. The present study aimed to investigate the association between BAIAP2 and ADHD in Chinese Han subjects. METHODS: A total of 1,397 ADHD trios comprised of one ADHD proband and their parents were included for family-based association tests. Independent 569 ADHD cases and 957 normal controls were included for case-control studies. Diagnosis was performed according to the DSM-IV criteria. Nine single nucleotide polymorphisms (SNPs) of BAIAP2 were chosen and performed genotyping for both family-based and case-control association studies. RESULTS: Transmission disequilibrium tests (TDTs) for family-based association studies showed significant association between the CA haplotype comprised by rs3934492 and rs9901648 with predominantly inattentive type (ADHD-I). For case-control study, chi-square tests provided evidence for the contribution of SNP rs4969239, rs3934492 and rs4969385 to ADHD and its two clinical subtypes, ADHD-I and ADHD-C. However, only the associations for ADHD and ADHD-I retained significant after corrections for multiplicity or logistic regression analyses adjusting the potential confounding effect of gender and age. CONCLUSIONS: These above results indicated the possible involvement of BAIAP2 in the etiology of ADHD, especially ADHD-I. | 24377651 | 2013-12-30 |
| 11052572 | Mechanism of Oncogenic Signal Activation by the Novel Fusion Kinase FGFR3-BAIAP2L1. | Nakanishi Y, etal., Mol Cancer Ther. 2015 Mar;14(3):704-12. doi: 10.1158/1535-7163.MCT-14-0927-T. Epub 2015 Jan 14. | Recent cancer genome profiling studies have identified many novel genetic alterations, including rearrangements of genes encoding FGFR family members. However, most fusion genes are not functionally characterized, and their potentials in targeted therapy are unclear. We investigated a recently disco vered gene fusion between FGFR3 and BAI1-associated protein 2-like 1 (BAIAP2L1). We identified 4 patients with bladder cancer and 2 patients with lung cancer harboring the FGFR3-BAIAP2L1 fusion through PCR and FISH assay screens. To investigate the oncogenic potential of the fusion gene, we established an FGFR3-BAIAP2L1 transfectant with Rat-2 fibroblast cells (Rat-2_F3-B). The FGFR3-BAIAP2L1 fusion had transforming activity in Rat2 cells, and Rat-2_F3-B cells were highly tumorigenic in mice. Rat-2_F3-B cells showed in vitro and in vivo sensitivity in the selective FGFR inhibitor CH5183284/Debio 1347, indicating that FGFR3 kinase activity is critical for tumorigenesis. Gene signature analysis revealed that FGFR3-BAIAP2L1 activates growth signals, such as the MAPK pathway, and inhibits tumor-suppressive signals, such as the p53, RB1, and CDKN2A pathways. We also established Rat-2_F3-B-DeltaBAR cells expressing an FGFR3-BAIAP2L1 variant lacking the Bin-Amphiphysin-Rvs (BAR) dimerization domain of BAIAP2L1, which exhibited decreased tumorigenic activity, FGFR3 phosphorylation, and F3-B-DeltaBAR dimerization, compared with Rat-2_F3-B cells. Collectively, these data suggest that constitutive dimerization through the BAR domain promotes constitutive FGFR3 kinase activation and is essential for its potent oncogenic activity. | 25589496 | 2015-04-01 |
| 11076167 | BAI1-Associated Protein 2-Like 1 (BAIAP2L1) Is a Potential Biomarker in Ovarian Cancer. | Chao A, etal., PLoS One. 2015 Jul 29;10(7):e0133081. doi: 10.1371/journal.pone.0133081. eCollection 2015. | Brain-specific angiogenesis inhibitor 1 (BAI1)-associated protein 2-like 1 (BAIAP2L1), also known as insulin receptor tyrosine kinase substrate (IRTKS), is involved in plasma membrane protrusion and actin formation during cell morphogenesis and migration. BAIAP2 style='font-weight:700;'>BAIAP2L1 is recently reported to promote cell proliferation through activation of the EGFR-ERK pathway in hepatocellular carcinoma. In this study, we report the first comprehensive study of BAIAP2L1 upregulation in human ovarian cancer. Upregulation of BAIAP2L1 in ovarian tumors was first found during RNA screening and confirmed by immunohistochemical studies on ovarian cancers and other cancer types. Significant upregulation of BAIAP2L1 in ovarian cancer was validated by analyzing multiple independent cohorts in publicly available data sets. Furthermore, BAIAP2L1 protein expression in metastatic lesions was higher than the corresponding primary tumors. Functional assays in ovarian cancer cells revealed that BAIAP2L1 is involved in promoting cell proliferation and avoiding apoptosis. In conclusion, results of this study not only indicate that BAIAP2L1 can be used as a biomarker for human ovarian cancer but also reveal its role in cancer biology. Further elucidation of the role of BAIAP2L1 in context of the insulin receptor signaling pathways of cancer cells is warranted for developing cancer therapeutics by targeting cancer-specific metabolism. | 26222696 | 1000-05-01 |