| 11086188 | BAG2 promotes tumorigenesis through enhancing mutant p53 protein levels and function. | Yue X, etal., Elife. 2015 Aug 13;4. doi: 10.7554/eLife.08401. | Tumor suppressor p53 is the most frequently mutated gene in tumors. Many mutant p53 (mutp53) proteins promote tumorigenesis through the gain-of-function (GOF) mechanism. Mutp53 proteins often accumulate to high levels in tumors, which is critical for mutp53 GOF. Its underlying mechanism is poorly un derstood. Here, we found that BAG2, a protein of Bcl-2 associated athanogene (BAG) family, promotes mutp53 accumulation and GOF in tumors. Mechanistically, BAG2 binds to mutp53 and translocates to the nucleus to inhibit the MDM2-mutp53 interaction, and MDM2-mediated ubiquitination and degradation of mutp53. Thus, BAG2 promotes mutp53 accumulation and GOF in tumor growth, metastasis and chemoresistance. BAG2 is frequently overexpressed in tumors. BAG2 overexpression is associated with poor prognosis in patients and mutp53 accumulation in tumors. These findings revealed a novel and important mechanism for mutp53 accumulation and GOF in tumors, and also uncovered an important role of BAG2 in tumorigenesis through promoting mutp53 accumulation and GOF. | 26271008 | 1000-06-01 |
| 13514075 | The cochaperone BAG2 sweeps paired helical filament- insoluble tau from the microtubule. | Carrettiero DC, etal., J Neurosci. 2009 Feb 18;29(7):2151-61. doi: 10.1523/JNEUROSCI.4660-08.2009. | Tau inclusions are a prominent feature of many neurodegenerative diseases including Alzheimer's disease. Their accumulation in neurons as ubiquitinated filaments suggests a failure in the degradation limb of the Tau pathway. The components of a Tau protein triage system consisting of CHIP/Hsp70 and other chaperones have begun to emerge. However, the site of triage and the master regulatory elements are unknown. Here, we report an elegant mechanism of Tau degradation involving the cochaperone BAG2. The BAG2/Hsp70 complex is tethered to the microtubule and this complex can capture and deliver Tau to the proteasome for ubiquitin-independent degradation. This complex preferentially degrades Sarkosyl insoluble Tau and phosphorylated Tau. BAG2 levels in cells are under the physiological control of the microRNA miR-128a, which can tune paired helical filament Tau levels in neurons. Thus, we propose that ubiquitinated Tau inclusions arise due to shunting of Tau degradation toward a less efficient ubiquitin-dependent pathway. | 19228967 | 2009-02-18 |
| 11074989 | BAG2 expression dictates a functional intracellular switch between the p38-dependent effects of nicotine on tau phosphorylation levels via the alpha7 nicotinic receptor. | de Oliveira AS, etal., Exp Neurol. 2016 Jan;275 Pt 1:69-77. doi: 10.1016/j.expneurol.2015.10.005. Epub 2015 Oct 21. | The histopathological hallmarks present in Alzheimer's disease (AD) brain are plaques of Abeta peptide, neurofibrillary tangles of hyperphosphorylated tau protein, and a reduction in nicotinic acetylcholine receptor (nAChR) levels. The role of nAChRs in AD is particularly controversial. Tau protein function is regulated by phosphorylation, and its hyperphosphorylated forms are significantly more abundant in AD brain. Little is known about the relationship between nAChR and phospho-tau degradation machinery. Activation of nAChRs has been reported to increase and decrease tau phosphorylation levels, and the mechanisms responsible for this discrepancy are not presently understood. The co-chaperone BAG2 is capable of regulating phospho-tau levels via protein degradation. In SH-SY5Y cell line and rat primary hippocampal cell culture low endogenous BAG2 levels constitute an intracellular environment conducive to nicotine-induced accumulation of phosphorylated tau protein. Further, nicotine treatment inhibited endogenous expression of BAG2, resulting in increased levels of phosphorylated tau indistinguishable from those induced by BAG2 knockdown. Conversely, overexpression of BAG2 is conducive to a nicotine-induced reduction in cellular levels of phosphorylated tau protein. In both cases the effect of nicotine was p38MAPK-dependent, while the alpha7 antagonist MLA was synthetic to nicotine treatment, either increasing levels of phospho-Tau in the absence of BAG2, or further decreasing the levels of phospho-Tau in the presence of BAG2. Taken together, these findings reconcile the apparently contradictory effects of nicotine on tau phosphorylation by suggesting a role for BAG2 as an important regulator of p38-dependent tau kinase activity and phospho-tau degradation in response to nicotinic receptor stimulation. Thus, we report that BAG2 expression dictates a functional intracellular switch between the p38-dependent functions of nicotine on tau phosphorylation levels via the alpha7 nicotinic receptor. | 26496817 | 2016-05-01 |
| 11067178 | BAG2 Gene-mediated Regulation of PINK1 Protein Is Critical for Mitochondrial Translocation of PARKIN and Neuronal Survival. | Qu D, etal., J Biol Chem. 2015 Dec 18;290(51):30441-52. doi: 10.1074/jbc.M115.677815. Epub 2015 Nov 4. | Emerging evidence has demonstrated a growing genetic component in Parkinson disease (PD). For instance, loss-of-function mutations in PINK1 or PARKIN can cause autosomal recessive PD. Recently, PINK1 and PARKIN have been implicated in the same signaling pathway to regulate mitochondrial clearance t hrough recruitment of PARKIN by stabilization of PINK1 on the outer membrane of depolarized mitochondria. The precise mechanisms that govern this process remain enigmatic. In this study, we identify Bcl2-associated athanogene 2 (BAG2) as a factor that promotes mitophagy. BAG2 inhibits PINK1 degradation by blocking the ubiquitination pathway. Stabilization of PINK1 by BAG2 triggers PARKIN-mediated mitophagy and protects neurons against 1-methyl-4-phenylpyridinium-induced oxidative stress in an in vitro cell model of PD. Collectively, our findings support the notion that BAG2 is an upstream regulator of the PINK1/PARKIN signaling pathway. | 26538564 | 2015-04-01 |
| 11343564 | BAG2 Is Repressed by NF-kappaB Signaling, and Its Overexpression Is Sufficient to Shift Abeta1-42 from Neurotrophic to Neurotoxic in Undifferentiated SH-SY5Y Neuroblastoma. | Santiago FE, etal., J Mol Neurosci. 2015 Sep;57(1):83-9. doi: 10.1007/s12031-015-0579-5. Epub 2015 May 19. | Amyloid-beta (Abeta) binds to various neuronal receptors and elicits a context- and dose-dependent toxic or trophic response from neurons. The molecular mechanisms for this phenomenon are presently unknown. The cochaperone BAG2 has been shown to mediate importan t cellular responses to stress, including cell cycle arrest and apoptosis. Here, we use SH-SY5Y neuroblastoma cells to characterize BAG2 expression and regulation and investigate the involvement of BAG2 in Abeta1-42-mediated neurotrophism or neurotoxicity in the context of differentiation. We report that BAG2 is upregulated on differentiation of SH-SY5Y cells into neuron-like cells. This increase in BAG2 expression is accompanied by a change in response to treatment with Abeta1-42 from neurotrophic to neurotoxic. Further, overexpression of BAG2 in undifferentiated SH-SY5Y cells was sufficient to induce the change from neurotrophic to neurotoxic response. Of several transcription factors queried, the putative BAG2 promoter had a higher-than-expected occurrence of response elements (RE) for nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB). Treatment with JSH-23, a potent inhibitor of NF-kappaB, caused a marked increase in BAG2 mRNA expression, suggesting that NF-kappaB is a repressor of BAG2 transcription in undifferentiated SH-SY5Y cells. Together, these data suggest that NF-kappaB-mediated modulation of BAG2 expression constitutes a "switch" that regulates the shift between the neurotrophic and neurotoxic effects of Abeta1-42. | 25985852 | 2015-07-01 |