Despite the importance of ADAM17-dependent cleavage in normal biology and disease, the physiological cues that trigger its activity, the effector pathways that promote its function, and the mechanisms that control its activity, particularly the role of phosphorylation, remain unresolved. Using nativ
e bladder epithelium, in some cases transduced with adenoviruses encoding small interfering RNA, we observe that stimulation of apically localized A1 adenosine receptors (A1ARs) triggers a Gi-Gßγ-phospholipase C-protein kinase C (PKC) cascade that promotes ADAM17-dependent HB-EGF cleavage, EGFR transactivation, and apical exocytosis. We further show that the cytoplasmic tail of rat ADAM17 contains a conserved serine residue at position 811, which resides in a canonical PKC phosphorylation site, and is phosphorylated in response to A1AR activation. Preventing this phosphorylation event by expression of a nonphosphorylatable ADAM17(S811A) mutant or expression of a tail-minus construct inhibits A1AR-stimulated, ADAM17-dependent HB-EGF cleavage. Furthermore, expression of ADAM17(S811A) in bladder tissues impairs A1AR-induced apical exocytosis. We conclude that adenosine-stimulated exocytosis requires PKC- and ADAM17-dependent EGFR transactivation and that the function of ADAM17 in this pathway depends on the phosphorylation state of Ser-811 in its cytoplasmic domain.
In mammals, the bladder stores urine without permitting the passage of urine contents into the bloodstream, a function, in part, of the uroepithelial-associated tight junction complex. The protein constituents that make up this high-resistance barrier in the bladder are currently unknown, although t
he claudins, a multigene family, are thought to govern paracellular transport in other epithelia. Reverse transcriptase-polymerase chain reaction analysis was used to define that mRNA for claudin-2, -4, -8, -12, and -13 was expressed in mouse bladder tissue. The localization of these claudins, as well as the tight junction-associated proteins zonula occludens-1 (ZO-1) and occludin, within the bladder epithelium was determined by immunofluorescence microscopy. As expected, occludin and ZO-1 were localized to the tight junctions of rat, mouse, and rabbit umbrella cells. Intriguingly, ZO-1 in mouse epithelium, ZO-1 in the dome region of rabbit bladders and occludin in rat and mouse bladders were also expressed in the underlying intermediate and basal cell layers. Claudin-4, -8, and -12 were found in the umbrella cell tight junction; however, additional staining of claudin-4 was observed along the sites of cell-cell contact in the underlying cell layers of rat, mouse, and rabbit tissue. No claudin-2 staining was associated with tight junctions in the uroepithelium. Our results indicate that claudin-4, -8, and -12 are expressed in umbrella cells, where they may impart the high-resistance phenotype associated with this cell type, and that in some instances tight junction proteins are also associated at the sites of cell contact of the underlying cell layers, perhaps playing some role in cell-cell adhesion.
Cetin S, etal., J Biol Chem 2004 Jun 4;279(23):24592-600. Epub 2004 Mar 30.
Diseases of gut inflammation such as neonatal necrotizing enterocolitis (NEC) result after an injury to the mucosal lining of the intestine, leading to translocation of bacteria and endotoxin (lipopolysaccharide). Intestinal mucosal defects are repaired by the process of intestinal restitution, duri
ng which enterocytes migrate from healthy areas to sites of injury. In an animal model of NEC, we determined that intestinal restitution was significantly impaired compared with control animals. We therefore sought to determine the mechanisms governing enterocyte migration under basal conditions and after an endotoxin challenge. Here we show that the cytoskeletal reorganization and stress fiber formation required for migration in IEC-6 enterocytes requires RhoA. Enterocytes were found to express the endotoxin receptor Toll-like receptor 4, which served to bind and internalize lipopolysaccharide. Strikingly, endotoxin treatment significantly inhibited intestinal restitution, as measured by impaired IEC-6 cell migration across a scraped wound. Lipopolysaccharide was found to increase RhoA activity in a phosphatidylinositol 3-kinase-dependent manner, leading to an increase in phosphorylation of focal adhesion kinase and an enhanced number of focal adhesions. Importantly, endotoxin caused a progressive, RhoA-dependent increase in cell matrix tension/contractility, which correlated with the observed impairment in enterocyte migration. We therefore conclude that endotoxin inhibits enterocyte migration through a RhoA-dependent increase in focal adhesions and enhanced cell adhesiveness, which may participate in the impaired restitution observed in experimental NEC.
Montalbetti N, etal., Am J Physiol Renal Physiol. 2015 Dec 15;309(12):F1070-81. doi: 10.1152/ajprenal.00200.2015. Epub 2015 Sep 30.
Changes in the urothelial barrier are observed in patients with cystitis, but whether this leads to inflammation or occurs in response to it is currently unknown. To determine whether urothelial barrier dysfunction is sufficient to promote cystitis, we employed in situ adenoviral transduction to sel
ectively overexpress the pore-forming tight junction-associated protein claudin-2 (CLDN-2). As expected, the expression of CLDN-2 in the umbrella cells increased the permeability of the paracellular route toward ions, but not to large organic molecules. In vivo studies of bladder function revealed higher intravesical basal pressures, reduced compliance, and increased voiding frequency in rats transduced with CLDN-2 vs. controls transduced with green fluorescent protein. While the integrity of the urothelial barrier was preserved in the rats transduced with CLDN-2, we found that the expression of this protein in the umbrella cells initiated an inflammatory process in the urinary bladder characterized by edema and the presence of a lymphocytic infiltrate. Taken together, these results are consistent with the notion that urothelial barrier dysfunction may be sufficient to trigger bladder inflammation and to alter bladder function.
Species of field mice (genus Apodemus) are the most common rodents inhabiting woodlands and forests of the Palaearctic region. We examined the cytochrome b (cyt b) gene in mitochondrial DNA (1140 bp) and the interphotoreceptor retinoid binding protein (IRBP) gen
e in nuclear DNA (1152 bp) in nine species of Apodemus. Based on the genetic variation, the nine species were grouped into four lineages: (1) Agrarius group (A. agrarius, A. peninsulae, A. semotus, and A. speciosus), (2) Argenteus group (A. argenteus), (3) Gurkha group (A. gurkha), and (4) Sylvaticus group (A. alpicola, A. flavicollis, and A. sylvaticus). It was shown that these four lineages diverged within a short period of evolutionary time, suggestive of a radiation event. Soon after the radiation, the Agrarius group was likely to have differentiated again into the species lineages simultaneously. In contrast, the European clade, the Sylvaticus group, radiated rather recently. The relative ratio of the extent of sequence divergence among the four main lineages to that among the members of the subfamily Murinae (including Mus and Rattus) was calculated to be 72.4% in the cyt b gene with transversional substitutions, and 58.5% in the IRBP gene with all substitutions, using the Kimura two-parameter method. The value for the three European lineages was 27.6% in the cyt b gene and 12.3% in the IRBP gene. These results may have a correlation with the notion that deciduous broadleaf forests remained in Central East Asia through the late Tertiary to the present, while those in Europe to a large extent had disappeared by the Pliocene.