AIMS/HYPOTHESIS: Three recent genome-wide association studies (GWAS) identified several single-nucleotide polymorphisms (SNPs) with modest effects on diabetic retinopathy in Mexican-American and white patients with diabetes. This study aimed to evaluate the effects of these variants on diabetic reti
nopathy in Chinese patients with type 2 diabetes. METHODS: A total of 1,972 patients with type 2 diabetes were recruited to this study, including 819 patients with diabetic retinopathy and 1,153 patients with diabetes of >/=5 years duration but without retinopathy. Forty SNPs associated with diabetic retinopathy in three GWAS were genotyped. Fundus photography was performed to diagnose and classify diabetic retinopathy. RESULTS: rs17684886 in ZNRF1 and rs599019 near COLEC12 were associated with diabetic retinopathy (OR 0.812, p = 0.0039 and OR 0.835, p = 0.0116, respectively) and with the severity of diabetic retinopathy (p = 0.0365 and p = 0.0252, respectively, for trend analysis). Sub-analysis in patients with diabetic retinopathy revealed that rs6427247 near SCYL1BP1 (also known as GORAB) and rs899036 near API5 were associated with severe diabetic retinopathy (OR 1.368, p = 0.0333 and OR 0.340, p = 0.0005, respectively). The associations between rs6427247 and rs899036 and severe diabetic retinopathy became more evident after a meta-analysis of published GWAS data (OR 1.577, p = 2.01 x 10(-4) for rs6427247; OR 0.330, p = 5.84 x 10(-7) for rs899036). CONCLUSIONS/INTERPRETATION: We determined that rs17684886 and rs599019 are associated with diabetic retinopathy and that rs6427247 and rs899036 are associated with severe diabetic retinopathy in Chinese patients with type 2 diabetes.
Mayank AK, etal., Cell Death Dis. 2015 Dec 17;6:e2018. doi: 10.1038/cddis.2015.360.
Apoptosis of host cells profoundly influences virus propagation and dissemination, events that are integral to influenza A virus (IAV) pathogenesis. The trigger for activation of apoptosis is regulated by an intricate interplay between cellular and viral proteins, with a strong bearing on IAV repli
cation. Though the knowledge of viral proteins and mechanisms employed by IAV to induce apoptosis has advanced considerably of late, we know relatively little about the repertoire of host factors targeted by viral proteins. Thus, identification of cellular proteins that are hijacked by the virus will help us not only to understand the molecular underpinnings of IAV-induced apoptosis, but also to design future antiviral therapies. Here we show that the nucleoprotein (NP) of IAV directly interacts with and suppresses the expression of API5, a host antiapoptotic protein that antagonizes E2F1-dependent apoptosis. siRNA-mediated depletion of API5, in NP-overexpressed as well as IAV-infected cells, leads to upregulation of apoptotic protease activating factor 1 (APAF1), a downstream modulator of E2F1-mediated apoptosis, and cleavage of caspases 9 and 3, although a reciprocal pattern of these events was observed on ectopic overexpression of API5. In concordance with these observations, annexin V and 7AAD staining assays exhibit downregulation of early and late apoptosis in IAV-infected or NP-transfected cells on overexpression of API5. Most significantly, while overexpression of API5 decreases viral titers, cellular NP protein as well as mRNA levels in IAV-infected A549 cells, silencing of API5 expression causes a steep rise in the same parameters. From the data reported in this manuscript, we propose a proapoptotic role for NP in IAV pathogenesis, whereby it suppresses expression of antiapoptotic factor API5, thus potentiating the E2F1-dependent apoptotic pathway and ensuring viral replication.