Alinezhad S, etal., BMC Urol. 2016 Feb 29;16:10. doi: 10.1186/s12894-016-0128-8.
BACKGROUND: The high false negative rates for initial prostate biopsies refer a large number of the men for repeat biopsies each year. Therefore, biomarkers associated with high risk of the presence of malignancy in histologically benign biopsies could provide a tool to discriminate the patients wh
o need repeat biopsy or intensive follow-up from those who do not. Here we examined the diagnostic applicability of alpha-methylacyl CoA racemase (AMACR) and androgen receptor (AR) mRNA expression and AMACR protein levels in benign and cancerous prostatic tissue. METHODS: AMACR and AR mRNA levels were measured with quantitative, reverse-transcription PCR (qRT-PCR) assays in 79 radical prostatectomy (RP) cases (including 69 benign (RP-Be) and 69 cancerous (RP-PCa) samples) and 19 benign prostate samples obtained from cystoprostatectomies. To further determine the detailed areas of altered AMACR expression, AMACR mRNA level measurement and protein staining were performed for three cross-sectioned RP cases. RESULTS: The median AMACR and AR expression levels were 194.6 (p < 0.0001) and 6.6 (p = 0.0004) times higher in RP-PCa samples than in the benign cystoprostatectomy (CP) samples, respectively. There was no statistically significant difference between RP-PCa and RP-Be samples, except for AMACR/KLK3 (Kallikrein-Related Peptidase 3) ratio, which was significantly higher in RP-PCa samples than in RP-Be samples (p = 0.016). In the systematic study of cross-sections, AMACR mRNA was detected in all of the studied areas including histologically benign tissue, but at significantly higher levels in carcinoma areas (p < 0.001). AMACR protein expression was detected in 80 % (28/35) of the areas that contained carcinoma and in 37 % (44/119) of the benign and PIN areas from the same patients. CONCLUSIONS: AMACR transcripts were detected in all RP-PCa and RP-Be samples but not in non-cancerous CP samples, which suggest a global increase of AMACR expression in cancerous prostates. Therefore patients with false negative biopsies might benefit from an AMACR mRNA measurement when assessing their cancer risk.
Alpha-methylacyl-CoA racemase (AMACR/P504S) is a useful biomarker of prostate cancer. We evaluated the expression of AMACR in upper urinary tract urothelial carcinomas with respect to associations with tumour stage, grade an
d metastasis-free survival. A total of 268 tumours were investigated immunohistochemically using a tissue microarray technique. AMACR expression was noted in 127 of 261 (48.7%) evaluated tumours and was associated with high tumour stage [58 of 139 (41.7%) pTa/pT1 vs. 69 of 122 (56.6%) pT2-pT4, P=0.019] and high tumour grade [44 of 137 (32.1%) low vs. 83 of 124 (66.9%) high grade, P<0.001]. In addition, AMACR expression was associated with the presence of tumour necrosis (P<0.001) and marked stromal desmoplasia (P=0.0026). This correlation indicates that increased AMACR expression might be related to hypoxia-induced changes in cancer cell metabolism, such as increased dependence on fatty acid oxidation for energy generation. Progressive disease was observed in 73 of 183 (39.9%) patients with solitary invasive carcinomas and was associated with AMACR expression (P=0.017). Multivariate analysis, however, proved only pT-stage >1 (P<0.001) and high tumour grade (P<0.001) to be independent predictors of patient outcome. In conclusion, AMACR expression correlated with advanced tumour stage and grade and may serve as an additional prognostic indicator in upper urinary tract urothelial cancer.
Lee EJ, etal., J Comp Neurol 2004 Mar 15;470(4):372-81.
Disabled 1 (Dab1) is an adapter molecule in a signaling pathway, stimulated by Reelin, which controls cell positioning in the developing brain. It has been localized to AII amacrine cells in the mouse and guinea pig retinas. This study was conducted to identify
whether Dab1 is commonly localized to AII amacrine cells in the retinas of other mammals. We investigated Dab1-labeled cells in human, rat, rabbit, and cat retinas in detail by immunocytochemistry with antisera against Dab1. Dab1 immunoreactivity was found in certain populations of amacrine cells, with lobular appendages in the outer half of the inner plexiform layer (IPL) and a bushy, smooth dendritic tree in the inner half of the IPL. Double-labeling experiments demonstrated that all Dab1-immunoreactive amacrine cells were immunoreactive to antisera against calretinin or parvalbumin (i.e., other markers for AII amacrine cells in the mammalian retina) and that they made contacts with the axon terminals of the rod bipolar cells in the IPL close to the ganglion cell layer. Furthermore, all Dab1-labeled amacrine cells showed glycine transporter-1 immunoreactivity, indicating that they are glycinergic. The peak density was relatively high in the human and rat retinas, moderate in the cat retina, and low in the rabbit retina. Together, these morphological and histochemical observations clearly indicate that Dab1 is commonly localized to AII amacrine cells and that antiserum against Dab1 is a reliable and specific marker for AII amacrine cells of diverse mammals.
Tachibana N, etal., J Neurosci. 2016 Sep 7;36(36):9454-71. doi: 10.1523/JNEUROSCI.0936-16.2016.
UNLABELLED: All tissues are genetically programmed to acquire an optimal size that is defined by total cell number and individual cellular dimensions. The retina contains stereotyped proportions of one glial and six neuronal cell types that are generated in overlapping waves. How multipot
ent retinal progenitors know when to switch from making one cell type to the next so that appropriate numbers of each cell type are generated is poorly understood. Pten is a phosphatase that controls progenitor cell proliferation and differentiation in several lineages. Here, using a conditional loss-of-function strategy, we found that Pten regulates retinal cell division and is required to produce the full complement of rod photoreceptors and amacrine cells in mouse. We focused on amacrine cell number control, identifying three downstream Pten effector pathways. First, phosphoinositide 3-kinase/Akt signaling is hyperactivated in Pten conditional knock-out (cKO) retinas, and misexpression of constitutively active Akt (Akt-CA) in retinal explants phenocopies the reduction in amacrine cell production observed in Pten cKOs. Second, Akt-CA activates Tgfß signaling in retinal explants, which is a negative feedback pathway for amacrine cell production. Accordingly, Tgfß signaling is elevated in Pten cKO retinas, and epistatic analyses placed Pten downstream of TgfßRII in amacrine cell number control. Finally, Pten regulates Raf/Mek/Erk signaling levels to promote the differentiation of all amacrine cell subtypes, which are each reduced in number in Pten cKOs. Pten is thus a positive regulator of amacrine cell production, acting via multiple downstream pathways, highlighting its diverse actions as a mediator of cell number control. SIGNIFICANCE STATEMENT: Despite the importance of size for optimal organ function, how individual cell types are generated in correct proportions is poorly understood. There are several ways to control cell number, including readouts of organ function (e.g., secreted hormones reach functional levels when enough cells are made) or counting of cell divisions or cell number. The latter applies to the retina, where cell number is regulated by negative feedback signals, which arrest differentiation of particular cell types at threshold levels. Herein, we show that Pten is a critical regulator of amacrine cell number in the retina, acting via multiple downstream pathways. Our studies provide molecular insights into how PTEN loss in humans may lead to uncontrolled cell division in several pathological conditions.
Li S, etal., Invest Ophthalmol Vis Sci. 2006 May;47(5):2141-9.
PURPOSE: To examine the expression and cellular distribution pattern of endothelial nitric oxide synthase (eNOS) in the developing human retina and to compare its expression with that in rats. METHODS: Expression of eNOS was examined by immunohistochemistry in retinas of humans ranging from 8.5 to 2
8 weeks of gestation (WG) and of rats. RESULTS: In the developing human retina, eNOS expression was first detected in the proximal margin of the neuroblastic layer in the incipient fovea-surrounding area at 12 WG. At 17 to 28 WG, eNOS-immunoreactive cells were located in the innermost part of the inner nuclear layer and in the ganglion cell layer, expanding to both temporal and nasal retinas and the processes projecting into the inner plexiform layer. These eNOS-positive cells coexpressed syntaxin and glutamate decarboxylase, and are probably GABAergic amacrine cells. The onset of eNOS expression in developing amacrine cells, however, preceded the invasion of retinal vasculature, long before vascular function involving these cells can be expected, suggesting that eNOS has a role not only in vasoregulation but also in retinal development. From 20 WG on, eNOS was also detected in the photoreceptors adjacent to the fovea. eNOS expression in amacrine cells and photoreceptors was observed in the central-to-peripheral and temporal-to-nasal gradients. However, in the developing rat retina, eNOS was expressed exclusively in the vascular endothelial cells. CONCLUSIONS: The results support that eNOS plays a role, not only in the regulation of vascular function but also in the process of retinal development in humans.
Direction selectivity of direction-selective ganglion cells (DSGCs) in the retina results from patterned excitatory and inhibitory inputs onto DSGCs during motion stimuli. The inhibitory inputs onto DSGCs are directionally tuned to the antipreferred (null) direction and therefore potently suppress
spiking during motion in the null direction. However, whether direction-selective inhibition is indispensable for direction selectivity is unclear. Here, we selectively eliminated the directional tuning of inhibitory inputs onto DSGCs by disrupting GABA release from the presynaptic interneuron starburst amacrine cell in the mouse retina. We found that, even without directionally tuned inhibition, direction selectivity can still be implemented in a subset of On-Off DSGCs by direction-selective excitation and a temporal offset between excitation and isotropic inhibition. Our results therefore demonstrate the concerted action of multiple synaptic mechanisms for robust direction selectivity in the retina. Significance statement: The direction-selective circuit in the retina has been a classic model to study neural computations by the brain. An important but unresolved question is how direction selectivity is implemented by directionally tuned excitatory and inhibitory mechanisms. Here we specifically removed the direction tuning of inhibition from the circuit. We found that direction tuning of inhibition is important but not indispensable for direction selectivity of DSGCs' spiking activity, and that the residual direction selectivity is implemented by direction-selective excitation and temporal offset between excitation and inhibition. Our results highlight the concerted actions of synaptic excitation and inhibition required for robust direction selectivity in the retina and provide critical insights into how patterned excitation and inhibition collectively implement sensory processing.
Although neurotrophins have been assessed as candidate therapeutic agents for neural complications of diabetes, their involvement in diabetic retinopathy has not been fully characterized. We found that the protein and mRNA levels of brain-derived neurotrophic factor (BDNF) in streptozotocin-induced
diabetic rat retinas were reduced to 49% (P < 0.005) and 74% (P < 0.05), respectively, of those of normal control animals. In addition, dopaminergic amacrine cells appeared to be degenerating in the diabetic rat retinas, as revealed by tyrosine hydroxylase (TH) immunoreactivity. Overall TH protein levels in the retina were decreased to one-half that of controls (P < 0.01), reflecting reductions in the density of dopaminergic amacrine cells and the intensity of TH immunoreactivity within them. To confirm the neuropathological implications of BDNF reduction, we administered BDNF protein into the vitreous cavities of diabetic rats. Intraocular administration of BDNF rescued dopaminergic amacrine cells from neurodegeneration and counteracted the downregulation of TH expression, demonstrating its therapeutic potential. These findings suggest that the early retinal neuropathy of diabetes involves the reduced expression of BDNF and can be ameliorated by an exogenous supply of this neurotrophin.
Gastinger MJ, etal., Invest Ophthalmol Vis Sci. 2006 Jul;47(7):3143-50.
PURPOSE: To identify amacrine cells that are vulnerable to degeneration during the early stages of diabetes. METHODS: Whole retinas from streptozotocin (STZ)-diabetic rats and Ins2(Akita) mice were fixed in paraformaldehyde. Apoptotic cells in the retina were qu
antified using terminal dUTP nick-end labeling (TUNEL) and active caspase-3 (CM-1) immunohistochemistry. Immunohistochemical markers for choline acetyltransferase (ChAT) and tyrosine hyroxylase (TH) were also used to quantify populations of amacrine cells in the Ins2Akita mouse retinas. RESULTS: The number of TUNEL-positive nuclei increased from 29+/-4 in controls to 72+/-9 in the STZ-diabetic rat retinas after only 2 weeks of diabetes. In rats, CM-1-immunoreactive (IR) cells were found primarily in the inner nuclear and ganglion cell layers after 2, 8, and 16 weeks of diabetes. At each end point, the number of CM-1-IR cells in the retina was elevated by diabetes. Approximately 2% to 6% of the CM-1-IR cells in the inner nuclear layer (INL) were double-labeled for TH immunoreactivity. After 6 months of diabetes in the Ins2Akita mouse, the morphology of the labeled ChAT-IR and TH-IR amacrine cell somas and dendrites appeared normal. A quantitative analysis revealed a 20% decrease in the number of cholinergic and a 16% decrease in dopaminergic amacrine cells in the diabetic mouse retinas, compared with the nondiabetic control. CONCLUSIONS: Dopaminergic and cholinergic amacrine cells are lost during the early stages of retinal neuropathy in diabetes. Loss of these neurons may play a critical role in the development of visual deficits in diabetes.
Corso-Diaz X and Simpson EM, Mol Brain. 2015 Jun 20;8:37. doi: 10.1186/s13041-015-0126-x.
BACKGROUND: Nr2e1 is a nuclear receptor crucial for neural stem cell proliferation and maintenance. In the retina, lack of Nr2e1 results in premature neurogenesis, aberrant blood vessel formation and dystrophy. However, the specific role of Nr2e1 in the development of different retinal cell types a
nd its cell-autonomous and non-cell autonomous function(s) during eye development are poorly understood. RESULTS: Here, we studied the retinas of P7 and P21 Nr2e1 (frc/frc) mice and Nr2e1 (+/+) <--> Nr2e1 (frc/frc) chimeras. We hypothesized that Nr2e1 differentially regulates the development of various retinal cell types, and thus the cellular composition of Nr2e1 (frc/frc) retinas does not simply reflect an overrepresentation of cells born early and underrepresentation of cells born later as a consequence of premature neurogenesis. In agreement with our hypothesis, lack of Nr2e1 resulted in increased numbers of glycinergic amacrine cells with no apparent increase in other amacrine sub-types, normal numbers of Muller glia, the last cell-type to be generated, and increased numbers of Nr2e1 (frc/frc) S-cones in chimeras. Furthermore, Nr2e1 (frc/frc) Muller glia were mispositioned in the retina and misexpressed the ganglion cell-specific transcription factor Brn3a. Nr2e1 (frc/frc) retinas also displayed lamination defects including an ectopic neuropil forming an additional inner plexiform layer. In chimeric mice, retinal thickness was rescued by 34 % of wild-type cells and Nr2e1 (frc/frc) dystrophy-related phenotypes were no longer evident. However, the formation of an ectopic neuropil, misexpression of Brn3a in Muller glia, and abnormal cell numbers in the inner and outer nuclear layers at P7 were not rescued by wild-type cells. CONCLUSIONS: Together, these results show that Nr2e1, in addition to having a role in preventing premature cell cycle exit, participates in several other developmental processes during retinogenesis including neurite organization in the inner retina and development of glycinergic amacrine cells, S-cones, and Muller glia. Nr2e1 also regulates various aspects of Muller glia differentiation cell-autonomously. However, Nr2e1 does not have a cell-autonomous role in preventing retinal dystrophy. Thus, Nr2e1 regulates processes involved in neurite development and terminal retinal cell differentiation.
Xu HP, etal., J Neurosci. 2016 Mar 30;36(13):3871-86. doi: 10.1523/JNEUROSCI.3549-15.2016.
Retinal waves are correlated bursts of spontaneous activity whose spatiotemporal patterns are critical for early activity-dependent circuit elaboration and refinement in the mammalian visual system. Three separate developmental wave epochs or stages have been described, but the mechanism(s) of patt
ern generation of each and their distinct roles in visual circuit development remain incompletely understood. We used neuroanatomical,in vitroandin vivoelectrophysiological, and optical imaging techniques in genetically manipulated mice to examine the mechanisms of wave initiation and propagation and the role of wave patterns in visual circuit development. Through deletion of beta2 subunits of nicotinic acetylcholine receptors (beta2-nAChRs) selectively from starburst amacrine cells (SACs), we show that mutual excitation among SACs is critical for Stage II (cholinergic) retinal wave propagation, supporting models of wave initiation and pattern generation from within a single retinal cell type. We also demonstrate that beta2-nAChRs in SACs, and normal wave patterns, are necessary for eye-specific segregation. Finally, we show that Stage III (glutamatergic) retinal waves are not themselves necessary for normal eye-specific segregation, but elimination of both Stage II and Stage III retinal waves dramatically disrupts eye-specific segregation. This suggests that persistent Stage II retinal waves can adequately compensate for Stage III retinal wave loss during the development and refinement of eye-specific segregation. These experiments confirm key features of the "recurrent network" model for retinal wave propagation and clarify the roles of Stage II and Stage III retinal wave patterns in visual circuit development. SIGNIFICANCE STATEMENT: Spontaneous activity drives early mammalian circuit development, but the initiation and patterning of activity vary across development and among modalities. Cholinergic "retinal waves" are initiated in starburst amacrine cells and propagate to retinal ganglion cells and higher-order visual areas, but the mechanism responsible for creating their unique and critical activity pattern is incompletely understood. We demonstrate that cholinergic wave patterns are dictated by recurrent connectivity within starburst amacrine cells, and retinal ganglion cells act as "readouts" of patterned activity. We also show that eye-specific segregation occurs normally without glutamatergic waves, but elimination of both cholinergic and glutamatergic waves completely disrupts visual circuit development. These results suggest that each retinal wave pattern during development is optimized for concurrently refining multiple visual circuits.