| 2300312 | Acute-phase response to benzopyrene and induction of rat ALDH3A1. | Pappas P, etal., Chem Biol Interact. 2003 Feb 1;143-144:55-62. | The aldehyde dehydrogenase-3A1 (ALDH3A1) enzyme, encoded by a member of the [Ah]-gene family, is dramatically increased (more than 100-fold) by benzo[a]pyrene (BaP) and other polycyclic hydrocarbons. Although much is known regarding the mechanism for the drug-me tabolizing enzymes up-regulated by the Ah receptor, the physiological role of that tremendously increased ALDH3A1 enzyme activity is not yet fully clarified. The aim of this study was to identify a possible acute-phase response to different classes of xenobiotics affecting the metabolic capacity of the hepatocyte, by studying possible changes of serum acute-phase proteins (APPs) of hepatic origin, before and after BaP administration. Male Wistar rats were used in different series of experiments. The effects of BaP were estimated in terms of dose-response and time-response, with regard to the serum level of several APPs such as alpha-1-acid-glycoprotein (AAG), alpha-1-antitrypsin (AAT), C-reactive protein (CRP), and haptoglobin (HPT). In parallel experiments, levels of the same proteins have been determined after a time-dependent treatment with lipopolysaccharide (LPS). The changes in serum proteins were compared with the results of BaP or LPS administration on both hepatic ALDH3A1 and total ALDH enzyme activities. The results showed that BaP induced CRP and HPT in a time-dependent way, proportional to that caused by LPS. Additionally, ALDH3A1, CRP, and HPT were induced by BaP subacute treatment, whereas another type of ALDH inducer, phenobarbital, did not affect the levels of APPs or ALDH3A1, but did increase ALDH1A3 activity. Former studies of our group have shown that the inhibitory effects of different non-steroidal anti-inflammatory drugs (NSAIDs) on the ALDH3A1 induction were most possibly due to a decreased formation of arachidonic products like prostaglandins. Considering the changes of APPs caused by BaP, this study further supports the suggestion that the induction of ALDH3A1 is related to an atypical hepatocyte inflammation produced by xenobiotics. | 12604189 | 2003-09-01 | | 11521023 | ALDH3A1 Plays a Functional Role in Maintenance of Corneal Epithelial Homeostasis. | Koppaka V, etal., PLoS One. 2016 Jan 11;11(1):e0146433. doi: 10.1371/journal.pone.0146433. eCollection 2016. | Aldehyde dehydrogenase 1A1 (ALDH1A1) and ALDH3A1 are corneal crystallins. They protect inner ocular tissues from ultraviolet radiation (UVR)-induced oxidative damage through catalytic and non-catalytic mechanisms. Additionally, ALDH3A1 H3A1 has been postulated to play a regulatory role in the corneal epithelium based on several studies that report an inverse association between ALDH3A1 expression and corneal cell proliferation. The underlying molecular mechanisms and the physiological significance of such association remain poorly understood. In the current study, we established Tet-On human corneal epithelial cell (hTCEpi) lines, which express tetracycline-inducible wild-type (wt) or catalytically-inactive (mu) ALDH3A1. Utilizing this cellular model system, we confirmed that human ALDH3A1 decreases corneal cell proliferation; importantly, this effect appears to be partially mediated by its enzymatic activity. Mechanistically, wt-ALDH3A1, but not mu-ALDH3A1, promotes sequestering of tumor suppressor p53 in the nucleus. In the mouse cornea, however, augmented cell proliferation is noted only in Aldh1a1(-/-)/3a1(-/-) double knockout (DKO) mice, indicating in vivo the anti-proliferation effect of ALDH3A1 can be rescued by the presence of ALDH1A1. Interestingly, the hyper-proliferative epithelium of the DKO corneas display nearly complete loss of p53 expression, implying that p53 may be involved in ALDH3A1/1A1-mediated effect. In hTCEpi cells grown in high calcium concentration, mRNA levels of a panel of corneal differentiation markers were altered by ALDH3A1 expression and modulated by its enzyme activity. In conclusion, we show for the first time that: (i) ALDH3A1 decreases corneal epithelial proliferation through both non-enzymatic and enzymatic properties; (ii) ALDH1A1 contributes to the regulation of corneal cellular proliferation in vivo; and (iii) ALDH3A1 modulates corneal epithelial differentiation. Collectively, our studies indicate a functional role of ALDH3A1 in the maintenance of corneal epithelial homeostasis by simultaneously modulating proliferation and differentiation through both enzymatic and non-enzymatic mechanisms. | 26751691 | 1000-08-01 | |