Yang G, etal., PLoS One. 2015 Aug 13;10(8):e0135576. doi: 10.1371/journal.pone.0135576. eCollection 2015.
ATP-binding cassette (ABC) transporters are associated with poor response to chemotherapy, and confer a poor prognosis in various malignancies. However, the association between the expression of the ABC sub-family G member 4 (ABCG4) and prognosis in patients wit
h non-small-cell lung cancer (NSCLC) remains unclear. NSCLC tissue samples (n = 140) and normal lung tissue samples (n = 90) were resected from patients with stage II to IV NSCLC between May 2004 and May 2009. ABCG4 mRNA and protein expressions were detected by RT-PCR, western blot, and immunohistochemistry. Patients received four cycles of cisplatin-based post-surgery chemotherapy and were followed up until May 31st, 2014. ABCG4 positivity rate was higher in NSCLC than in normal lung tissues (48.6% vs. 0%, P<0.001) and ABCG4 expression was significantly associated with poor differentiation, higher tumor node metastasis (TNM) stage, and adenocarcinoma histological type (all P<0.001). Univariate (HR = 2.284, 95%CI: 1.570-3.324, P<0.001) and multivariate (HR = 2.236, 95%CI: 1.505-3.321, P<0.001) analyses showed that ABCG4 expression was an independent factor associated with a poor prognosis in NSCLC. Patients with ABCG4-positive NSCLC had shorter median survival than ABCG4-negative NSCLC (20.1 vs. 43.2 months, P<0.001). The prognostic significance of ABCG4 expression was apparent in stages III and IV NSCLC. In conclusion, high ABCG4 expression was associated with a poor prognosis in patients with NSCLC treated with cisplatin-based chemotherapy.
Aleidi SM, etal., J Biol Chem. 2015 Oct 2;290(40):24604-13. doi: 10.1074/jbc.M115.675579. Epub 2015 Aug 20.
The ATP-binding cassette transporter ABCG1 has an essential role in cellular cholesterol homeostasis, and dysregulation has been associated with a number of high burden diseases. Previous studies reported that ABCG1 is ubiquitinated and degraded via the ubiquitin proteasome system. However, so far t
he molecular mechanism, including the identity of any of the rate-limiting ubiquitination enzymes, or E3 ligases, is unknown. Using liquid chromatography mass spectrometry, we identified two HECT domain E3 ligases associated with ABCG1, named HUWE1 (HECT, UBA, and WWE domain containing 1, E3 ubiquitin protein ligase) and NEDD4-1 (Neural precursor cell-expressed developmentally down regulated gene 4), of which the latter is the founding member of the NEDD4 family of ubiquitin ligases. Silencing both HUWE1 and NEDD4-1 in cells overexpressing human ABCG1 significantly increased levels of the ABCG1 monomeric and dimeric protein forms, however ABCA1 protein expression was unaffected. In addition, ligase silencing increased ABCG1-mediated cholesterol export to HDL in cells overexpressing the transporter as well as in THP-1 macrophages. Reciprocally, overexpression of both ligases resulted in a significant reduction in protein levels of both the ABCG1 monomeric and dimeric forms. Like ABCG1, ABCG4 protein levels and cholesterol export activity were significantly increased after silencing both HUWE1 and NEDD4-1 in cells overexpressing this closely related ABC half-transporter. In summary, we have identified for the first time two E3 ligases that are fundamental enzymes in the post-translational regulation of ABCG1 and ABCG4 protein levels and cellular cholesterol export activity.