Zaruma-Torres F, etal., Drug Metabol Personal Ther. 2015 Sep;30(3):195-201. doi: 10.1515/dmpt-2015-0011.
BACKGROUND: Acute lymphoblastic leukemia (ALL) is one of the most frequent oncological disorders in pediatric populations. To date, the drug of choice for the treatment of ALL is methotrexate, a drug associated with a high risk of adverse reactions (ADRs). The xanthine oxidase (XO) polymorphisms, 19
36A>G and 2107A>G, as well as the polymorphic variants derived from ATP-binding cassette transporter gene subfamilies, ABCB1 and ABCC5, of drug resistant codifying genes, are implicated as precursors of drug-related neurologic, hepatic, and renal toxicities. Our aim was to determine whether the mentioned polymorphisms are risk or protective factors for the development of adverse reactions by methotrexate in our pediatric population with ALL. METHODS: A total of 35 Mexican children from Centro Estatal de Cancerologia-Durango, Mexico, with ALL and the previously noted polymorphisms as determined qPCR were studied. At the same time, a 12-month drug monitoring program was conducted in accordance with WHO-PAHO guidelines for pharmacovigilance. RESULTS: The ABCB11936A>G and 2107A>G and ABCC5 3414+434A>C polymorphisms were not associated with methotrexate ADRs. Single nucleotide polymorphisms (SNPs) of ABCB1 1236C>T (OR 0.19, 95% CI: 0.03-0.9, p<0.05) and ABCC5 3933+313T>C (OR 0.12, 95% CI: 0.027-0.58, p<0.05) were associated with methotrexate ADRs. CONCLUSIONS: SNPs 1236C>T of ABCB1 and ABCC5 3933+313T>C are not associated with the development of typical ADRs by methotrexate, rather, they showed a protective factor for myelosuppression in the studied sick population.
Jansen RS, etal., J Biol Chem. 2015 Dec 18;290(51):30429-40. doi: 10.1074/jbc.M115.692103. Epub 2015 Oct 29.
The ubiquitous efflux transporter ABCC5 (ATP-binding cassette subfamily C member 5) is present at high levels in the blood-brain barrier, neurons, and glia, but its in vivo substrates and function are not known. Using untargeted metabolomic screens, we show tha
t Abcc5(-/-) mice accumulate endogenous glutamate conjugates in several tissues, but brain in particular. The abundant neurotransmitter N-acetylaspartylglutamate was 2.4-fold higher in Abcc5(-/-) brain. The metabolites that accumulated in Abcc5(-/-) tissues were depleted in cultured cells that overexpressed human ABCC5. In a vesicular membrane transport assay, ABCC5 also transported exogenous glutamate analogs, like the classic excitotoxic neurotoxins kainic acid, domoic acid, and NMDA; the therapeutic glutamate analog ZJ43; and, as previously shown, the anti-cancer drug methotrexate. Glutamate conjugates and analogs are of physiological relevance because they can affect the function of glutamate, the principal excitatory neurotransmitter in the brain. After CO2 asphyxiation, several immediate early genes were expressed at lower levels in Abcc5(-/-) brains than in wild type brains, suggesting altered glutamate signaling. Our results show that ABCC5 is a general glutamate conjugate and analog transporter that affects the disposition of endogenous metabolites, toxins, and drugs.
Krajinovic M, etal., Pharmacogenomics J. 2015 Sep 8. doi: 10.1038/tpj.2015.63.
Anthracyclines are efficient chemotherapy agents. However, their use is limited by anthracycline-induced cardiotoxicity (CT). We investigated the influence of polymorphisms in doxorubicin metabolic and functional pathways on late-onset CT as estimated by echocardiography in 251 childhood acute lymph
oblastic leukemia (cALL) patients. Association analyses revealed a modulating effect of two variants: A-1629 T in ABCC5, an ATP-binding cassette transporter, and G894T in the NOS3 endothelial nitric oxide synthase gene. Individuals with the ABCC5 TT-1629 genotype had an average of 8-12% reduction of ejection (EF) and shortening fractions (SF; EF: P<0.0001, and SF: P=0.001, respectively). A protective effect of the NOS3 TT894 genotype on EF was seen in high-risk patients (P=0.02), especially in those who did not receive dexrazoxane (P=0.002). Analysis of an additional cohort of 44 cALL patients replicated the ABCC5 association but was underpowered for NOS3. In summary, we identified two biomarkers that may contribute to cALL anthracycline CT risk stratification.The Pharmacogenomics Journal advance online publication, 8 September 2015; doi:10.1038/tpj.2015.63.