Liu LY, etal., Pediatr Int. 2013 Apr;55(2):138-44. doi: 10.1111/ped.12049.
BACKGROUND: The significance of ABCB11 variants have been studied in some cholestatic diseases, but this is not clear in transient neonatal cholestasis (TNC). The aim of the present study was to explore the association between ABCB11
11 variants and TNC. METHODS: This was a case-control study. A total of 192 children with TNC referred to a tertiary referral hospital in eastern China were enrolled as subjects, and 196 healthy children were selected as controls. Part of the promoter and exons of the ABCB11 gene were sequenced directly. The single nucleotide polymorphism (SNP) site of V444A was tested using fluorescent quantitative polymerase chain reaction. Potential consequences of variants were predicted using bioinformatics software. The biochemistry indices were compared between the patients with or without possibly pathogenic variants/mutations. RESULTS: Twenty-eight variants, including 14 novel ones, were detected. Four novel, possibly pathogenic mutations (I416I, K436N, R928Q and IVS7+5G>A) were detected in six subjects. The gamma-glutamyltransferase level of these six was lower than in the others (P = 0.054). The genotype distribution of the four common SNP sites, V444A, A535A, A865V and A1082A, was not significantly different between TNC patients and controls. CONCLUSIONS: Approximately 3% of TNC cases can be attributed to ABCB11 mutations.
Polarization of hepatocytes is manifested by bile canalicular network formation and activation of LKB1 and AMPK, which control cellular energy metabolism. The bile acid, taurocholate, also regulates development of the canalicular network through activation of AMPK. In the present study, we used coll
agen sandwich hepatocyte cultures from control and liver-specific LKB1 knockout mice to examine the role of LKB1 in trafficking of ABCB11, the canalicular bile acid transporter. In polarized hepatocytes, ABCB11 traffics from Golgi to the apical plasma membrane and endogenously cycles through the rab 11a-myosin Vb recycling endosomal system. LKB1 knockout mice were jaundiced, lost weight and manifested impaired bile canalicular formation and intracellular trafficking of ABCB11, and died within three weeks. Using live cell imaging, fluorescence recovery after photobleaching (FRAP), particle tracking, and biochemistry, we found that LKB1 activity is required for microtubule-dependent trafficking of ABCB11 to the canalicular membrane. In control hepatocytes, ABCB11 trafficking was accelerated by taurocholate and cAMP; however, in LKB1 knockout hepatocytes, ABCB11 trafficking to the apical membrane was greatly reduced and restored only by cAMP, but not taurocholate. cAMP acted through a PKA-mediated pathway which did not activate AMPK. Our studies establish a regulatory role for LKB1 in ABCB11 trafficking to the canalicular membrane, hepatocyte polarization, and canalicular network formation.
BACKGROUND & AIMS: ABCB11 is a canalicular transport protein that controls the rate-limiting step in hepatic bile acid secretion. Its expression levels vary in humans, and it is not clear how these variations affect lipid metabolism. We investigated w
hether overexpression of Abcb11 in mice increases lipid absorption in the intestine and affects the development of obesity or hypercholesterolemia. METHODS: Transgenic mice that overexpress Abcb11 in liver (TTR-Abcb11) and FVB/NJ mice (controls) were fed a high-cholesterol or high-fat diet for 12 weeks. Intestinal lipid absorption was measured by the dual fecal isotope method. Energy expenditure was measured by indirect calorimetry. The bile acid pool was analyzed by high-performance liquid chromatography. RESULTS: TTR-Abcb11 mice had a nearly 2-fold increase in intestinal cholesterol absorption compared with controls. TTR-Abcb11 mice fed a high-cholesterol diet had greater increases in plasma and hepatic levels of cholesterol and became more obese than controls; they also had increased intestinal absorption of fatty acids and decreased energy expenditure. In the TTR-Abcb11 mice, the sizes of plasma and total bile acid pools were reduced; the bile acid pool contained more species of hydrophobic bile acids compared with controls. CONCLUSIONS: Hepatic overexpression of Abcb11 in mice promotes diet-induced obesity and hypercholesterolemia; increased intestinal cholesterol absorption by hydrophobic bile acids might cause these features. Increased absorption of fatty acids in the intestine and reduced expenditure of energy could increase weight gain in TTR-Abcb11 mice. In humans, variations in expression of ABCB11 might confer genetic susceptibility to diet-induced hyperlipidemia and obesity.
Hirano M, etal., J Pharmacol Exp Ther. 2005 Aug;314(2):876-82. Epub 2005 May 18.
Pravastatin is a well known 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor. Cumulative studies have shown that pravastatin is taken up into hepatocytes by the organic anion transporting polypeptide family transporters and excreted into the bile as an intact form by multidrug resistance-associate
d protein 2 (MRP2). It is generally accepted that the bile salt export pump (BSEP/ABCB11) mainly transports bile acids and plays an indispensable role in their biliary excretion. Interestingly, we found that BSEP could accept pravastatin as a substrate. Significant ATP-dependent uptake of pravastatin by human BSEP (hBSEP)- and rat BSEP (rBsep)-expressing membrane vesicles was observed, and the ratio of the uptake activity of pravastatin to that of taurocholic acid (TCA) by hBSEP was 3.3-fold higher than that by rBsep. The K(m) value of pravastatin for hBSEP was 124 muM. A mutual inhibition study between TCA and pravastatin revealed that they competitively interact with hBSEP. Several statins inhibited the hBSEP- and rBsep-mediated uptake of TCA; however, the specific uptake of other statins (cerivastatin, fluvastatin, and pitavastatin) by hBSEP and rBSEP was not detected. The inhibitory effects of hydrophilic statins (pravastatin and rosuvastatin) on the uptake of TCA by BSEP were relatively lower than those of lipophilic statins. These data suggest that BSEP may be partly involved in the biliary excretion of pravastatin in both rats and humans.
BACKGROUND & AIMS: Cholestasis is characterized by intrahepatic accumulation of potentially cytotoxic bile acids (BAs) subsequently leading to liver injury with disruption of hepatocellular integrity, inflammation, fibrosis and ultimately liver cirrhosis. Bile salt export pump (BSEP/ABCB11
style='font-weight:700;'>ABCB11) is the main canalicular BA transporter and therefore the rate limiting step for hepatobiliary BA excretion. In this study we aimed to investigate the role of BSEP/ABCB11 in the development of acquired cholestatic liver and bile duct injury. METHODS: Wild-type (WT) and BSEP knockout (BSEP-/-) mice were subjected to common bile duct ligation (CBDL) or 3.5-diethoxycarbonyl-1.4-dihydrocollidine (DDC) feeding as models for cholestasis with biliary obstruction and bile duct injury. mRNA expression profile, serum biochemistry, liver histology, immunohistochemistry, hepatic hydroxyproline levels and BA composition as well as biliary pressure were assessed. RESULTS: BSEP-/- mice were protected against acquired cholestatic liver injury induced by 7days of CBDL or 4weeks of DDC feeding, as reflected by unchanged serum levels of liver transaminases, alkaline phosphatase and BAs. Notably, BSEP-/- mice were also protected from cholestasis-induced hepatic inflammation and biliary fibrosis. In line with induced BA detoxification/hydroxylation pathways in BSEP-/- mice, polyhydroxylated BAs were increased 4-fold after CBDL and 6-fold after DDC feeding in comparison with cholestatic WT mice. Finally, following CBDL, biliary pressure in WT mice increased up to 47mmH2O but remained below 11mmH2O in BSEP-/- mice. CONCLUSION: Metabolic preconditioning with subsequent changes in BA metabolism favors detoxification of potentially toxic BAs and thereby protects BSEP-/- mice from cholestatic liver and bile duct injury. LAY SUMMARY: Reduced hepatobiliary bile acid transport due to loss of BSEP function leads to increased hydroxylation of bile acids in the liver. Metabolic preconditioning with a hydrophilic bile pool protects the BSEP-/- mice from acquired cholestatic liver disease.
Zhang Y, etal., J Biol Chem. 2012 Jul 13;287(29):24784-94. doi: 10.1074/jbc.M111.329318. Epub 2012 May 22.
The bile salt export pump (BSEP) is an ATP-binding cassette transporter that serves as the primary system for removing bile salts from the liver. In humans, deficiency of BSEP, which is encoded by the ABCB11 gene, causes severe progressive cholestatic liver dise
ase from early infancy. In previous studies of Abcb11 deficiency in mice generated on a mixed genetic background, the animals did not recapitulate the human disease. We reasoned that ABCB11 deficiency may cause unique changes in hepatic metabolism that are predictive of liver injury. To test this possibility, we first determined that Abcb11 knock-out (KO) C57BL/6J mice recapitulate human deficiency. Before the onset of cholestasis, Abcb11 KO mice have altered hepatic lipid metabolism coupled with reduced expression of genes important in mitochondrial fatty acid oxidation. This was associated with increased serum free-fatty acids, reduced total white adipose, and marked impairment of long-chain fatty acid β-oxidation. Importantly, metabolomic analysis confirmed that Abcb11 KO mice have impaired mitochondrial fatty acid β-oxidation with the elevated fatty acid metabolites phenylpropionylglycine and phenylacetylglycine. These metabolic changes precede cholestasis but may be of relevance to cholestatic disease progression because altered fatty acid metabolism can enhance reactive oxygen species that might exacerbate cholestatic liver damage.
BACKGROUND AND AIMS: Genetic defects in ATP8B1 or ABCB11 account for the majority of cholestasis with low GGT. But the ranges for GGT in patients with ATP8B1 or ABCB11 deficiency are unclear. This study tried to unravel the
features of GGT in these patients that improve diagnostic efficiency. METHODS: This study enrolled 207 patients with chronic cholestasis who were ordered to test for ATP8B1 and/or ABCB11 from January 2012 to December 2015. Additional 17 patients with ATPB81 or ABCB11 deficiency diagnosed between January 2004 and December 2011 were also enrolled in this study. 600 population-matched children served as controls. Clinical data were obtained by retrospectively reviewing medical records. RESULTS: A total of 26 patients were diagnosed with ATP8B1 deficiency and 30 patients were diagnosed with ABCB11 deficiency. GGT levels were similar between the two disorders at any observed month of age, but varied with age. The peak GGT value was <70U/L in the 2nd~6th month of life, <60U/L in the 7th~12th month and <50U/L beyond one year. GGT levels in patients with a genetic diagnosis were different from that in patients without a genetic diagnosis and controls. Larger ranges for GGT were found in patients without a genetic diagnosis. Some controls had GGT>/=70U/L in the 2nd~6th month. Of the 207 patients, 39 (18.8%) obtained a genetic diagnosis. 111 patients met the ranges described above, including all the 39 patients with ATP8B1 or ABCB11 deficiency. The sensitivity was 100.0%. The rate of a positive molecular diagnosis increased to 35.1% (39/111 vs. 39/207, X2 = 10.363, P = 0.001). The remaining 96 patients exceeded the ranges described above and failed to receive a genetic diagnosis. These patients accounted for 43.8% of sequencing cost. CONCLUSIONS: GGT levels in patients with ATP8B1 or ABCB11 deficiency varied with age. The peak GGT value was <70U/L in the 2nd~6th month of life, <60U/L in the 7th~12th month and <50U/L beyond one year.
Müllenbach R, etal., BMC Gastroenterol. 2012 Jun 8;12:63. doi: 10.1186/1471-230X-12-63.
BACKGROUND: The human ATP-binding cassette, subfamily B, member 11 (ABCB11) gene encodes the bile salt export pump, which is exclusively expressed at the canalicular membrane of hepatocytes. A frequent variant in the coding region, c.1331 T>C, leading
to the amino acid exchange p.V444A, has been associated with altered serum bile salt levels in healthy individuals and predisposes homozygous carriers of the [C] allele for obstetric cholestasis. Recently, elevated bile salt levels were shown to be significantly associated with rates and risk of cirrhosis in patients with chronic hepatitis C virus (HCV) infection treated with pegylated interferon-α2 and ribavirin, suggesting a potential role for bile salt levels in HCV treatment outcomes and in the fibrogenic evolution of HCV-related liver disease. The aim of this study was to investigate a possible association of ABCB11 c.1331 T>C with hepatitis C virus (HCV) infection and fibrosis stages as assessed by non-invasive transient elastography in a German cohort of patients. METHODS: ABCB11 c.1331 T>C genotype was determined by allelic discrimination assay in 649 HCV infected cases and 413 controls. Overall, 444 cases were staged for fibrotic progression by measurement of liver stiffness. RESULTS: Homo- or heterozygous presence of the frequent [C] allele was associated with HCV positivity (OR = 1.41, CI = 1.02 - 1.95, p = 0.037). No association was detectable between the ABCB11 c.1331 T>C genotype and increased liver stiffness. CONCLUSIONS: Our data confirm that homozygous presence of the major [C] allele of ABCB11 c.1331 T>C is a genetic susceptibility factor for HCV infection, but not for liver fibrosis.
BACKGROUND & AIMS: The bile salt export pump (BSEP, ABCB11) is essential for bile salt secretion at the canalicular membrane of liver cells. Clinical phenotypes associated with BSEP mutations are commonly categorized as benign recurrent intrahepatic c
holestasis (BRIC-2) or progressive familial intrahepatic cholestasis (PFIC-2). METHODS: The molecular basis of BSEP-associated liver disease in a sibling pair was characterized by immunostaining, gene sequencing, bile salt analysis and recombinant expression in mammalian cells and yeast for localization and in vitro activity studies respectively. RESULTS: Benign recurrent intrahepatic cholestasis was considered in a brother and sister who both suffered from intermittent cholestasis since childhood. Gene sequencing of ABCB11 identified the novel missense mutation p.G374S, which is localized in the putative sixth transmembrane helix of BSEP. Liver fibrosis was present in the brother at the age of 18 with progression to cirrhosis within 3 years. Immunofluorescence of liver tissue showed clear canalicular BSEP expression; however, biliary concentration of bile salts was drastically reduced. In line with these in vivo findings, HEK293 cells showed regular membrane targeting of human BSEP(G374S), whereas in vitro transport measurements revealed a strongly reduced transport activity. CONCLUSIONS: The novel mutation p.G374S impairs transport function without disabling membrane localization of BSEP. While all other known BSEP mutations within transmembrane helices are associated with PFIC-2, the new p.G374S mutation causes a transitional phenotype between BRIC-2 and PFIC-2.
Yabuuchi H, etal., Biopharm Drug Dispos. 2008 Nov;29(8):441-8. doi: 10.1002/bdd.629.
The dog bile salt export pump (BSEP; ABCB11) was cloned and expressed in a Sf9 insect cell system. The deduced amino acid sequence encodes a 1325-amino-acid protein, which shows 89.4% and 80.2% homology with human BSEP and rat Bsep, respectively. The transcript
of the dog Bsep gene was detected at a high level in liver, but not other tissues, by quantitative RT-PCR. The BSEP-expressing membrane vesicles isolated from Sf9 cells exhibited saturable uptake of [(3)H]taurocholic acid with Michaelis constants (K(m)) of 33.7, 22.2 and 19.9 microM for the dog, rat and human transporters, respectively. The uptake of [(3)H]taurocholic acid by all three transporters was significantly inhibited by troglitazone, glibenclamide, and other several inhibitors, while pravastatin inhibited dog Bsep and human BSEP, but not rat Bsep at 100 microM. The IC(50) of troglitazone for dog Bsep, human BSEP, and rat Bsep were 32, 20, and 60 microM, and those of pravastatin were 441, 240 and >1,000 microM, respectively. In conclusion, while dog Bsep shows similar ATP-dependent bile acid transport characteristics to human BSEP and rat Bsep, there is a species difference in affinity for drugs such as pravastatin and troglitazone.
Besheer T, etal., Turk J Gastroenterol. 2018 May;29(3):299-307. doi: 10.5152/tjg.2018.17570.
BACKGROUND/AIMS: Chronic hepatitis C (CHC)-related mortality generally results from cirrhosis and subsequent complications. We aimed to investigate the potential role of plasma bile acid levels and ABCB11 1331T > C (V444A, rs2287622) (ATP-binding cass
ette subfamily B, member 11) gene polymorphism in fibrosis prediction in CHC genotype 4 patients. MATERIALS AND METHODS: This case control study included 85 healthy control and the following 225 subjects: 170 adult patients infected with hepatitis C virus (HCV) and categorized into three groups according to liver biopsy; no fibrosis group (F0) (n=33), early fibrosis group (F1-F2) (n=61), and advanced fibrosis group (F3-F4) (n=76). Fasting bile acid levels, hepatitis C virus (HCV) genotyping, and ABCB11 1331T > C gene polymorphism were assessed. RESULTS: The frequency of the variant homozygote genotype CC in advanced fibrosis was significantly higher than that in early fibrosis (48.7% vs. 36.1%) (odd ratio, OR =2.58; 95% confidence interval, CI=1.07-6.20; p=0.03). C allele was significantly represented in advanced fibrosis (65.8%) compared with that in early fibrosis (51.6%) (OR=1.80, 95% CI=1.10-2.93, p=0.01). A significant elevation of plasma bile acid levels in advanced fibrosis was observed compared with those in early fibrosis (p<=0.001). Receiver operating characteristic curve for plasma bile acid levels at cutoff value of 75.5 μmol/L had a 59% specificity and 97.4% sensitivity as a predictor of advanced hepatic fibrosis (AUROC=0.78%). CONCLUSION: We concluded that Egyptian patients having chronic hepatitis C genotype 4 with CC genotype of ABCB11 SNP 1331T > C and high plasma bile acid levels at cutoff value of 75.5 μmol/L were associated with advanced hepatic fibrosis.
Background: Daclatasvir is an inhibitor of HCV non-structural 5A protein and is a P-glycoprotein substrate. Pharmacogenetics has had a great impact on previous anti-HCV therapies, particularly considering the association of IL-28B polymorphisms with dual therapy outcome. Objectives:
We investigated the association between daclatasvir plasma concentrations at 2 weeks and 1 month of therapy and genetic variants (SNPs) in genes encoding transporters and nuclear factors (ABCB1, ABCB11 and HNF4α). Patients and methods: Allelic discrimination was achieved through real-time PCR, whereas plasma concentrations were evaluated through LC-MS/MS. Results: Fifty-two patients were analysed, all enrolled in the Kineti-C study. HNF4α 975 C > G polymorphism was found to be associated with the daclatasvir plasma concentrations at 2 weeks (P = 0.009) and 1 month of therapy (P = 0.006). Linear regression analysis suggested that, at 2 weeks of therapy, age, baseline BMI and haematocrit were significant predictors of daclatasvir concentrations, whereas at 1 month of therapy ABCB111131 CC and HNF4α CG/GG genotypes were significant predictors of daclatasvir concentrations. Conclusions: These are the first and preliminary results from our clinical study focusing on daclatasvir pharmacogenetics, showing that this approach could have a role in the era of new anti-HCV therapies.
The bile salt export pump (BSEP, ABCB11) couples ATP hydrolysis with transport of bile acids into the bile canaliculus of hepatocytes. Its localization in the apical canalicular membrane is physiologically regulated by the demand to secrete biliary components. T
o gain insight into how such localization is regulated, we studied the intracellular trafficking of BSEP tagged with yellow fluorescent protein (YFP) in polarized WIF-B9 cells. Confocal imaging revealed that BSEP-YFP was localized at the canalicular membrane and in tubulo-vesicular structures either adjacent to the microtubule-organizing center or widely distributed in the cytoplasm. In the latter two locations, BSEP-YFP colocalized with rab11, an endosomal marker. Selective photobleaching experiments revealed that single BSEP-YFP molecules resided in canalicular membranes only transiently before exchanging with intracellular BSEP-YFP pools. Such exchange was inhibited by microtubule and actin inhibitors and was unaffected by brefeldin A, dibutyryl cyclic AMP, taurocholate, or PI 3-kinase inhibitors. Intracellular carriers enriched in BSEP-YFP elongated and dissociated as tubular elements from a globular structure adjacent to the microtubule-organizing center. They displayed oscillatory movement toward either canalicular or basolateral membranes, but only fused with the canalicular membrane. The pathway between canalicular and intracellular membranes that BSEP constitutively cycles within could serve to regulate apical pools of BSEP as well as other apical membrane transporters.
Diao L, etal., J Biol Chem. 2010 Oct 8;285(41):31185-92. doi: 10.1074/jbc.M110.107805. Epub 2010 Aug 11.
In the present study MRP2/ABCC2 and BSEP/ABCB11 expression were investigated in sandwich cultured (SC) human and rat hepatocytes exposed to the proinflammatory cytokines. The investigation was also done in lipopolysaccharide (LPS)-treated rats. In SC human hepat
ocytes, both absolute protein and mRNA levels of MRP2/ABCC2 were significantly down-regulated by TNF-alpha, IL-6, or IL-1beta. In contrast to mRNA decrease, which was observed for BSEP/ABCB11, the protein amount was significantly increased by IL-6 or IL-1beta. A discrepancy between the change in BSEP/ABCB11 mRNA and protein levels was encountered in SC human hepatocytes treated with proinflammatory cytokines. In SC rat hepatocytes, Mrp2/Abcc2 mRNA was down-regulated by TNF-alpha and IL-6, whereas the protein level was decreased by all three cytokines. Down-regulations of both Bsep/Abcb11 mRNA and protein levels were found in SC rat hepatocytes exposed to TNF-alpha or IL-1beta. Administration of LPS triggered the release of the proinflammatory cytokines and caused the decrease of Mrp2/Abcc2 and Bsep/Abcb11 protein in liver at 24 h post-treatment; however, the Mrp2 and Bsep protein levels rebounded at 48 h post-LPS treatment. In total, our results indicate that proinflammatory cytokines regulate the expression of MRP2/Mrp2 and BSEP/Bsep and for the first time demonstrate the differential effects on BSEP/Bsep expression between SC human and rat hepatocytes. Furthermore, the agreement between transporter regulation in vitro in SC rat hepatocytes and in vivo in LPS-treated rats during the acute response phase demonstrates the utility of in vitro SC hepatocyte models for predicting in vivo effects.
Chen R, etal., Sci Rep. 2016 Jun 13;6:27750. doi: 10.1038/srep27750.
Evidence indicates that the polymorphisms in bile salt export pump (BSEP, encoded by ABCB11) may play an important role in the development of anti-tuberculosis drug-induced liver injury (ATDILI) and we aim to investigate the association between genetic variants
of ABCB11 and the risk of ATDILI in a Chinese cohort. A total of 89 tuberculosis patients with ATDILI and 356 matched ATDILI -free patients constituted cases and controls. Genetic polymorphisms of ABCB11 were determined by TaqMan single-nucleotide polymorphism (SNP) genotyping assay. Odds ratio (OR) with 95% confidence intervals (CIs) was estimated by conditional logistic regression model. There were no significant differences in genotype frequencies of ABCB11 between cases and controls. In the subgroup analysis, polymorphisms of rs2287616 were found to be associated with cholestatic/mixed pattern of liver injury under dominant and addictive model (OR = 3.84, 95% CI:1.16-12.75, P = 0.028 and OR = 2.51, 95% CI:1.12-5.62, P = 0.025, respectively), however the significance disappeared after Bonferroni correction. This study suggested that genetic variants of ABCB11 gene might contribute to anti-tuberculosis drug-induced cholestatic liver injury in Chinese patients. Studies in larger, varied populations are required to confirm these findings.
Intrahepatic cholestasis of pregnancy (ICP) is a liver disorder associated with increased risk of intrauterine fetal death and prematurity. There is increasing evidence that genetically determined dysfunction in the canalicular ABC transporters bile salt export pump (BSEP, ABCB11
00;'>ABCB11) and multidrug resistance protein 3 (MDR3, ABCB4) might be risk factors for ICP development. This study aimed to (i). describe the extent of genetic variability in BSEP and MDR3 in ICP and (ii). identify new disease-causing mutations. Twenty-one women with ICP and 40 women with uneventful pregnancies were recruited between April 2001 and April 2003. Sequencing of BSEP and MDR3 spanned 8-10 kb per gene and comprised the promoter region and 100-350 bp of the flanking intronic region around each exon. DNA sequencing of polymerase chain reaction fragments was performed on an ABI3700 capillary sequencer. MDR3 promoter activity of promoter constructs carrying different ICP-specific mutations was studied using reporter assays. A total of 37 and 51 variant sites were detected in BSEP and MDR3, respectively. Three non-synonymous sites in codons for evolutionarily conserved amino acids were specific for the ICP collective (BSEP, N591S; MDR3, S320F and G762E). Furthermore, four ICP-specific splicing mutations were detected in MDR3 [intron 21, G(+1)A; intron 25, G(+5)C and C(-3)G; and intron 26, T(+2)A]. Activity of the mutated MDR3 promoter was similar to that observed for the wild-type promoter. Our data further support an involvement of MDR3 genetic variation in the pathogenesis of ICP, whereas analysis of BSEP sequence variation indicates that this gene is probably less important for the development of pregnancy-associated cholestasis.
The reduced expression of the bile salt export pump (BSEP/ABCB11) at the canalicular membrane is associated with cholestasis-induced hepatotoxicity due to the accumulation of bile acids in hepatocytes. We previously reported that 4-phenylbutyrate (4PBA), an appr
oved drug for urea cycle disorders, is a promising agent for intrahepatic cholestasis because it increases both the cell surface expression and the transport capacity of BSEP. In the present study, we searched for effective compounds other than 4PBA by focusing on short- and medium-chain fatty acids, which have similar characteristics to 4PBA such as their low-molecular-weight and a carboxyl group. In transcellular transport studies using Madin-Darby canine kidney (MDCK) II cells, all short- and medium-chain fatty acids tested except for formate, acetate, and hexanoic acid showed more potent effects on wild type (WT) BSEP-mediated [3H]taurocholate transport than did 4PBA. The increase in WT BSEP transport with butyrate and octanoic acid treatment correlated with an increase in its expression at the cell surface. Two PFIC2-type variants, E297G and D482G BSEP, were similarly affected with both compounds treatment. The prolonged half-life of cell surface-resident WT BSEP was responsible for this increased octanoic acid-stimulated transport, but not for that of butyrate. In conclusion, short- and medium-chain fatty acids have potent effects on the increase in WT and PFIC2-type BSEP-mediated transport in MDCK II cells. Although both short- and medium-chain fatty acids enhance the transport capacity of WT and PFIC2-type BSEP by inducing those expressions at the cell surface, the underlying mechanism seems to differ between fatty acids.
Hayashi H and Sugiyama Y, Mol Pharmacol. 2009 Jan;75(1):143-50. doi: 10.1124/mol.108.049288. Epub 2008 Oct 1.
The reduced expression of the bile salt export pump (BSEP/ABCB11) at the canalicular membrane is associated with cholestasis-induced hepatotoxicity due to the accumulation of bile acids in hepatocytes. We demonstrated previously that 4-phenylbutyrate (4PBA) trea
tment, a U.S. Food and Drug Administration-approved drug for the treatment of urea cycle disorders, induces the cell-surface expression of BSEP by prolonging the degradation rate of cell-surface-resident BSEP. On the other hand, BSEP mutations, E297G and D482G, found in progressive familial intrahepatic cholestasis type 2 (PFIC2), reduced it by shortening the degradation rate of cell-surface-resident BSEP. Therefore, to help the development of the medical treatment of cholestasis, we investigated the underlying mechanism by which 4PBA and PFIC2-type mutations affect the BSEP degradation from cell surface, focusing on short-chain ubiquitination. In Madin-Darby canine kidney II (MDCK II) cells expressing BSEP and rat canalicular membrane vesicles, the molecular mass of the mature form of BSEP/Bsep shifted from 170 to 190 kDa after ubiquitin modification (molecular mass, 8 kDa). Ubiquitination susceptibility of BSEP/Bsep was reduced in vitro and in vivo by 4PBA treatment and, conversely, was enhanced by BSEP mutations E297G and D482G. Moreover, biotin-labeling studies using MDCK II cells demonstrated that the degradation of cell-surface-resident chimeric protein fusing ubiquitin to BSEP was faster than that of BSEP itself. In conclusion, BSEP/Bsep is modified with two to three ubiquitins, and its ubiquitination is modulated by 4PBA treatment and PFIC2-type mutations. Modulation of short-chain ubiquitination can regulate the change in the degradation rate of cell-surface-resident BSEP by 4PBA treatment and PFIC2-type mutations.
Mochizuki K, etal., Am J Physiol Gastrointest Liver Physiol. 2007 Mar;292(3):G818-28. doi: 10.1152/ajpgi.00415.2006. Epub 2006 Nov 2.
The aim of this study was to determine the role of N-linked glycosylation in protein stability, intracellular trafficking, and bile acid transport activity of the bile salt export pump [Bsep (ATP-binding cassette B11)]. Rat Bsep was fused with yellow fluorescent protein, and the following mutants, i
n which Asn residues of putative glycosylation sites (Asn(109), Asn(116), Asn(122), and Asn(125)) were sequentially replaced with Gln, were constructed by site-directed mutagenesis: single N109Q, double N109Q + N116Q, triple N109Q + N116Q + N122Q, and quadruple N109Q + N116Q + N122Q + N125Q. Immunoblot and glycosidase cleavage analysis demonstrated that each site was glycosylated. Removal of glycans decreased taurocholate transport activity as determined in polarized MDCK II cells. This decrease resulted from rapid decay of the mutant Bsep protein; biochemical half-lives were 3.76, 3.65, 3.24, 1.35, and 0.52 h in wild-type, single-mutant, double-mutant, triple-mutant, and quadruple-mutant cells, respectively. Wild-type and single- and double-mutant proteins were distributed exclusively along the apical membranes, whereas triple- and quadruple-mutant proteins remained intracellular. MG-132 but not bafilomycin A(1) extended the half-life, suggesting a role for the proteasome in Bsep degradation. To determine whether a specific glycosylation site or the number of glycans was critical for protein stability, we studied the protein expression of combinations of N-glycan-deficient mutants and observed that Bsep with one glycan was considerably unstable compared with Bsep harboring two or more glycans. In conclusion, at least two N-linked glycans are required for Bsep protein stability, intracellular trafficking, and function in the apical membrane.