RGD Reference Report - The peroxin Pex14p. cDNA cloning by functional complementation on a Chinese hamster ovary cell mutant, characterization, and functional analysis. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

The peroxin Pex14p. cDNA cloning by functional complementation on a Chinese hamster ovary cell mutant, characterization, and functional analysis.

Authors: Shimizu, N  Itoh, R  Hirono, Y  Otera, H  Ghaedi, K  Tateishi, K  Tamura, S  Okumoto, K  Harano, T  Mukai, S  Fujiki, Y 
Citation: Shimizu N, etal., J Biol Chem 1999 Apr 30;274(18):12593-604.
RGD ID: 68287
Web Url: http://www.jbc.org/cgi/content/full/274/18/12593
Pubmed: PMID:10212238   (View Abstract at PubMed)

Rat cDNA encoding a 376-amino acid peroxin was isolated by functional complementation of a peroxisome-deficient Chinese hamster ovary cell mutant, ZP110, of complementation group 14 (CG14). The primary sequence showed 28 and 24% amino acid identity with the yeast Pex14p from Hansenula polymorpha and Saccharomyces cerevisiae, respectively; therefore, we termed this cDNA rat PEX14 (RnPEX14). Human and Chinese hamster Pex14p showed 96 and 94% identity to rat Pex14p, except that both Pex14p comprised 377 amino acids. Pex14p was characterized as an integral membrane protein of peroxisomes, exposing its N- and C-terminal parts to the cytosol. Pex14p interacts with both Pex5p and Pex7p, the receptors for peroxisome targeting signal type 1 (PTS1) and PTS2, respectively, together with the receptors' cargoes, PTS1 and PTS2 proteins. Mutation in PEX14 from ZP161, the same CG as ZP110, was determined by reverse transcription-PCR as follows. A 133-base pair deletion at nucleotide residues 37-169 in one allele created a termination codon at 40-42; in addition to this mutation, 103 base pairs were deleted at positions 385-487, resulting in the second termination immediately downstream the second deletion site in the other allele. Neither of these two mutant forms of Pex14p restored peroxisome biogenesis in ZP110 and ZP161, thereby demonstrating PEX14 to be responsible for peroxisome deficiency in CG14.

Gene Ontology Annotations    Click to see Annotation Detail View

Biological Process
TermQualifierEvidenceWithReferenceNotesSourceOriginal Reference(s)
peroxisome organization  IDA 68287 RGD 

Objects Annotated

Genes (Rattus norvegicus)
Pex14  (peroxisomal biogenesis factor 14)


Additional Information