Masurel-Paulet A, etal., Am J Med Genet A. 2016 Aug;170(8):2103-10. doi: 10.1002/ajmg.a.37765. Epub 2016 Jun 3.
Using targeted next generation sequencing, we have identified a splicing mutation (c.526-9_526-5del) in the SLC9A6 gene in a 9-year-old boy with mild intellectual disability (ID), microcephaly, and social interaction disabilities. This intronic microdeletion le
ads to the skipping of exon 3 and to an in-frame deletion of 26 amino acids in the TM4 domain. It segregates with cognitive impairment or learning difficulties in other members of the family. Mutations in SLC9A6 have been reported in X-linked Christianson syndrome associating severe to profound intellectual deficiency and an Angelman-like phenotype with microcephaly, absent speech, ataxia with progressive cerebellar atrophy, ophthalmoplegia, epilepsy, and neurological regression. The proband and his maternal uncle both have an attenuated phenotype with mild ID, attention deficit disorder, speech difficulties, and mild asymptomatic cerebellar atrophy. The proband also have microcephaly. The mutation cosegregated with learning disabilities and speech difficulties in the female carriers (mother and three sisters of the proband). Detailed neuropsychological, speech, and occupational therapy investigations in the female carriers revealed impaired oral and written language acquisition, with dissociation between verbal and performance IQ. An abnormal phenotype, ranging from learning disability with predominant speech difficulties to mild intellectual deficiency, has been described previously in a large proportion of female carriers. Besides broadening the clinical spectrum of SLC9A6 gene mutations, we present an example of a monogenic origin of mild learning disability. (c) 2016 Wiley Periodicals, Inc.
Gilfillan GD, etal., Am J Hum Genet. 2008 Apr;82(4):1003-10. doi: 10.1016/j.ajhg.2008.01.013. Epub 2008 Mar 13.
Linkage analysis and DNA sequencing in a family exhibiting an X-linked mental retardation (XLMR) syndrome, characterized by microcephaly, epilepsy, ataxia, and absent speech and resembling Angelman syndrome, identified a deletion in the SLC9A6 gene encoding the
Na(+)/H(+) exchanger NHE6. Subsequently, other mutations were found in a male with mental retardation (MR) who had been investigated for Angelman syndrome and in two XLMR families with epilepsy and ataxia, including the family designated as having Christianson syndrome. Therefore, mutations in SLC9A6 cause X-linked mental retardation. Additionally, males with findings suggestive of unexplained Angelman syndrome should be considered as potential candidates for SLC9A6 mutations.
Sikora J, etal., Dis Model Mech. 2016 Jan 1;9(1):13-23. doi: 10.1242/dmm.022780. Epub 2015 Oct 29.
Christianson syndrome (CS) is an X-linked neurodevelopmental and neurological disorder characterized in males by core symptoms that include non-verbal status, intellectual disability, epilepsy, truncal ataxia, postnatal microcephaly and hyperkinesis. CS is caused by mutations in the SLC9A6
nt-weight:700;'>SLC9A6 gene, which encodes a multipass transmembrane sodium (potassium)-hydrogen exchanger 6 (NHE6) protein, functional in early recycling endosomes. The extent and variability of the CS phenotype in female heterozygotes, who presumably express the wild-type and mutant SLC9A6 alleles mosaically as a result of X-chromosome inactivation (XCI), have not yet been systematically characterized. Slc9a6 knockout mice (Slc9a6 KO) were generated by insertion of the bacterial lacZ/beta-galactosidase (beta-Gal) reporter into exon 6 of the X-linked gene. Mutant Slc9a6 KO male mice have been shown to develop late endosomal/lysosomal dysfunction associated with glycolipid accumulation in selected neuronal populations and patterned degeneration of Purkinje cells (PCs). In heterozygous female Slc9a6 KO mice, beta-Gal serves as a transcriptional/XCI reporter and thus facilitates testing of effects of mosaic expression of the mutant allele on penetrance of the abnormal phenotype. Using beta-Gal, we demonstrated mosaic expression of the mutant Slc9a6 allele and mosaically distributed lysosomal glycolipid accumulation and PC pathology in the brains of heterozygous Slc9a6 KO female mice. At the behavioral level, we showed that heterozygous female mice suffer from visuospatial memory and motor coordination deficits similar to but less severe than those observed in X-chromosome hemizygous mutant males. Our studies in heterozygous Slc9a6 KO female mice provide important clues for understanding the likely phenotypic range of Christianson syndrome among females heterozygous for SLC9A6 mutations and might improve diagnostic practice and genetic counseling by helping to characterize this presumably underappreciated patient/carrier group.