Cystinuria is an autosomal inherited disorder of renal reabsorption of cystine, arginine, lysine, and ornithine. Increased urinary excretion of cystine results in the formation of kidney stones. Considering the few studies on the genetic basis of the cystinuria in the Middle East and the population-
specific distribution of mutations in the SLC3A1 and SLC7A9 genes, in the present study, mutation analysis of these two genes was performed in a cohort of Iranian patients with cystinuria. Thirty unrelated cystinuria patients were analyzed for four of the most common mutations using ARMS-PCR (M467T, T216M) and RFLP-PCR (G105R, R333W) methods. For negative sample, two exons of both genes, which harbor many mutations, were subject to DNA sequencing. Eight variants were identified including missense, polymorphism, intron variant, and a novel variant. The most frequent mutations were not detected in our patients and only G105R was found. Since the molecular genetic testing results may influence the therapy and prognosis of cystinuria, this paper contributes to understanding of the molecular basis of cystinuria in the Iranian patients.
Font MA, etal., Hum Mol Genet. 2001 Feb 15;10(4):305-16.
Cystinuria (OMIM 220100) is a common recessive disorder of renal reabsorption of cystine and dibasic amino acids that results in nephrolithiasis of cystine. Mutations in SLC3A1, which encodes rBAT, cause Type I cystinuria, and mutations in SLC7A9, which encodes
a putative subunit of rBAT (b(o,+)AT), cause non-Type I cystinuria. Here we describe the genomic structure of SLC7A9 (13 exons) and 28 new mutations in this gene that, together with the seven previously reported, explain 79% of the alleles in 61 non-Type I cystinuria patients. These data demonstrate that SLC7A9 is the main non-Type I cystinuria gene. Mutations G105R, V170M, A182T and R333W are the most frequent SLC7A9 missense mutations found. Among heterozygotes carrying these mutations, A182T heterozygotes showed the lowest urinary excretion values of cystine and dibasic amino acids. Functional analysis of mutation A182T after co-expression with rBAT in HeLa cells revealed significant residual transport activity. In contrast, mutations G105R, V170M and R333W are associated to a complete or almost complete loss of transport activity, leading to a more severe urinary phenotype in heterozygotes. SLC7A9 mutations located in the putative transmembrane domains of b(o,+)AT and affecting conserved amino acid residues with a small side chain generate a severe phenotype, while mutations in non-conserved residues give rise to a mild phenotype. These data provide the first genotype-phenotype correlation in non-Type I cystinuria, and show that a mild urinary phenotype in heterozygotes may associate with mutations with significant residual transport activity.
Cystinuria (MIM 220100) is a common recessive disorder of renal reabsorption of cystine and dibasic amino acids. Mutations in SLC3A1, encoding rBAT, cause cystinuria type I (ref. 1), but not other types of cystinuria (ref. 2). A gene whose mutation causes non-type I cystinuria has been mapped by lin
kage analysis to 19q12-13.1 (Refs 3,4). We have identified a new transcript, encoding a protein (bo, +AT, for bo,+ amino acid transporter) belonging to a family of light subunits of amino acid transporters, expressed in kidney, liver, small intestine and placenta, and localized its gene (SLC7A9) to the non-type I cystinuria 19q locus. Co-transfection of bo,+AT and rBAT brings the latter to the plasma membrane, and results in the uptake of L-arginine in COS cells. We have found SLC7A9 mutations in Libyan-Jews, North American, Italian and Spanish non-type I cystinuria patients. The Libyan Jewish patients are homozygous for a founder missense mutation (V170M) that abolishes b o,+AT amino-acid uptake activity when co-transfected with rBAT in COS cells. We identified four missense mutations (G105R, A182T, G195R and G295R) and two frameshift (520insT and 596delTG) mutations in other patients. Our data establish that mutations in SLC7A9 cause non-type I cystinuria, and suggest that bo,+AT is the light subunit of rBAT.
BACKGROUND: Cystinuria is an inherited disorder of defective renal reabsorption of cystine and the dibasic amino acids. Recently, SLC3A1 and SLC7A9 have been identified as responsible genes. While point mutations in the two genes are well known to cause cystinu
ria, only a few studies are aimed on the identification of gross genomic alterations. Here, we report our results of a systematic screening for deletions and duplications in SLC3A1 and SLC7A9 by quantitative real-time polymerase chain reaction (PCR). METHODS: We screened a cohort of 49 cystinurics for copy number deviations in the genes SLC3A1 and SLC7A9 by quantitative real-time PCR assays using fluorogenic 5' nuclease chemistry. The detected duplication in SLC3A1 was analyzed in detail by further real-time assays, reverse transcription (RT)-PCR and direct sequencing. RESULTS: In seven patients, we could identify a large duplication in SLC3A1 spanning from intron 4 to intron 9. This tandem duplication was accompanied by a small inversion of 25 bp and a 2 bp deletion in intron 9. As a formation mechanism, we presume that the inversion in intron 9 and several Alu sequences neighbored to the affected region provoke a chromatin structure that stimulates the duplication event. In addition to the SLC3A1 duplication, we observed deletions in SLC7A9 in three patients. CONCLUSION: The frequency of genomic rearrangements in our patient population illustrates the significant contribution of large genomic alterations to the mutation spectrum in cystinuria. As we could show, quantitative real-time PCR is a reliable and effective tool for the identification of unbalanced genomic rearrangements.