RGD Reference Report - Localization of the ATP/phosphatidylinositol 4,5 diphosphate-binding site to a 39-amino acid region of the carboxyl terminus of the ATP-regulated K+ channel Kir1.1. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Localization of the ATP/phosphatidylinositol 4,5 diphosphate-binding site to a 39-amino acid region of the carboxyl terminus of the ATP-regulated K+ channel Kir1.1.

Authors: Dong, K  Tang, L  MacGregor, GG  Hebert, SC 
Citation: Dong K, etal., J Biol Chem 2002 Dec 20;277(51):49366-73.
RGD ID: 729239
Pubmed: PMID:12381730   (View Abstract at PubMed)
DOI: DOI:10.1074/jbc.M208679200   (Journal Full-text)

Intracellular ATP and membrane-associated phosphatidylinositol phospholipids, like PIP(2) (PI(4,5)P(2)), regulate the activity of ATP-sensitive K(+) (K(ATP)) and Kir1.1 channels by direct interaction with the pore-forming subunits of these channels. We previously demonstrated direct binding of TNP-ATP (2',3'-O-(2,4,6-trinitrophenylcyclo-hexadienylidene)-ATP) to the COOH-terminal cytosolic domains of the pore-forming subunits of Kir1.1 and Kir6.x channels. In addition, PIP(2) competed for TNP-ATP binding on the COOH termini of Kir1.1 and Kir6.x channels, providing a mechanism that can account for PIP(2) antagonism of ATP inhibition of these channels. To localize the ATP-binding site within the COOH terminus of Kir1.1, we produced and purified maltose-binding protein (MBP) fusion proteins containing truncated and/or mutated Kir1.1 COOH termini and examined the binding of TNP-ATP and competition by PIP(2). A truncated COOH-terminal fusion protein construct, MBP_1.1CDeltaC170, containing the first 39 amino acid residues distal to the second transmembrane domain was sufficient to bind TNP-ATP with high affinity. A construct containing the remaining COOH-terminal segment distal to the first 39 amino acid residues did not bind TNP-ATP. Deletion of 5 or more amino acid residues from the NH(2)-terminal side of the COOH terminus abolished nucleotide binding to the entire COOH terminus or to the first 49 amino acid residues of the COOH terminus. PIP(2) competed TNP-ATP binding to MBP_1.1CDeltaC170 with an EC(50) of 10.9 microm. Mutation of any one of three arginine residues (R188A/E, R203A, and R217A), which are conserved in Kir1.1 and K(ATP) channels and are involved in ATP and/or PIP(2) effects on channel activity, dramatically reduced TNP-ATP binding to MBP_1.1DeltaC170. In contrast, mutation of a fourth conserved residue (R212A) exhibited slightly enhanced TNP-ATP binding and increased affinity for PIP(2) competition of TNP-ATP (EC(50) = 5.7 microm). These studies suggest that the first 39 COOH-terminal amino acid residues form an ATP-PIP(2) binding domain in Kir1.1 and possibly the Kir6.x ATP-sensitive K(+) channels.

Objects referenced in this article
Gene Kcnj1 potassium inwardly-rectifying channel, subfamily J, member 1 Rattus norvegicus

Additional Information