RGD Reference Report - Targeted integration in rat and mouse embryos with zinc-finger nucleases. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Targeted integration in rat and mouse embryos with zinc-finger nucleases.

Authors: Cui, X  Ji, D  Fisher, DA  Wu, Y  Briner, DM  Weinstein, EJ 
Citation: Cui X, etal., Nat Biotechnol. 2011 Jan;29(1):64-7. Epub 2010 Dec 12.
RGD ID: 6484517
Pubmed: PMID:21151125   (View Abstract at PubMed)
DOI: DOI:10.1038/nbt.1731   (Journal Full-text)

Gene targeting is indispensible for reverse genetics and the generation of animal models of disease. The mouse has become the most commonly used animal model system owing to the success of embryonic stem cell-based targeting technology, whereas other mammalian species lack convenient tools for genome modification. Recently, microinjection of engineered zinc-finger nucleases (ZFNs) in embryos was used to generate gene knockouts in the rat and the mouse by introducing nonhomologous end joining (NHEJ)-mediated deletions or insertions at the target site. Here we use ZFN technology in embryos to introduce sequence-specific modifications (knock-ins) by means of homologous recombination in Sprague Dawley and Long-Evans hooded rats and FVB mice. This approach enables precise genome engineering to generate modifications such as point mutations, accurate insertions and deletions, and conditional knockouts and knock-ins. The same strategy can potentially be applied to many other species for which genetic engineering tools are needed.

Objects referenced in this article
Gene ROSA26em1(SB11)Mcwi ROSA 26 ZFN-stimulated knockin mutant 1; Medical College of Wisconsin Rattus norvegicus
Strain SS-ROSA26em1(SB11)Mcwi null Rattus norvegicus

Additional Information