Submit Data |  Help |  Video Tutorials |  News |  Publications |  FTP Download |  REST API |  Citing RGD |  Contact   

Ca2+-independent phospholipase A2 is a novel determinant of store-operated Ca2+ entry.

Authors: Smani, T  Zakharov, SI  Leno, E  Csutora, P  Trepakova, ES  Bolotina, VM 
Citation: Smani T, etal., J Biol Chem. 2003 Apr 4;278(14):11909-15. Epub 2003 Jan 23.
Pubmed: (View Article at PubMed) PMID:12547829
DOI: Full-text: DOI:10.1074/jbc.M210878200

Store-operated cation (SOC) channels and capacitative Ca(2+) entry (CCE) play very important role in cellular function, but the mechanism of their activation remains one of the most intriguing and long lasting mysteries in the field of Ca(2+) signaling. Here, we present the first evidence that Ca(2+)-independent phospholipase A(2) (iPLA(2)) is a crucial molecular determinant in activation of SOC channels and store-operated Ca(2+) entry pathway. Using molecular, imaging, and electrophysiological techniques, we show that directed molecular or pharmacological impairment of the functional activity of iPLA(2) leads to irreversible inhibition of CCE mediated by nonselective SOC channels and by Ca(2+)-release-activated Ca(2+) (CRAC) channels. Transfection of vascular smooth muscle cells (SMC) with antisense, but not sense, oligonucleotides for iPLA(2) impaired thapsigargin (TG)-induced activation of iPLA(2) and TG-induced Ca(2+) and Mn(2+) influx. Identical inhibition of TG-induced Ca(2+) and Mn(2+) influx (but not Ca(2+) release) was observed in SMC, human platelets, and Jurkat T-lymphocytes when functional activity of iPLA(2) was inhibited by its mechanism-based suicidal substrate, bromoenol lactone (BEL). Moreover, irreversible inhibition of iPLA(2) impaired TG-induced activation of single nonselective SOC channels in SMC and BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)-induced activation of whole-cell CRAC current in rat basophilic leukemia cells. Thus, functional iPLA(2) is required for activation of store-operated channels and capacitative Ca(2+) influx in wide variety of cell types.


Gene Ontology Annotations
Objects Annotated

Additional Information

RGD Object Information
RGD ID: 6482757
Created: 2012-05-01
Species: All species
Last Modified: 2012-05-01
Status: ACTIVE


RGD is funded by grant HL64541 from the National Heart, Lung, and Blood Institute on behalf of the NIH.