RGD Reference Report - Coordinated expression of phosphorylase kinase subunits in regenerating skeletal muscle. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Coordinated expression of phosphorylase kinase subunits in regenerating skeletal muscle.

Authors: Cawley, KC  Akita, CG  Wineinger, MA  Carlsen, RC  Gorin, FA  Walsh, DA 
Citation: Cawley KC, etal., J Biol Chem 1992 Aug 25;267(24):17287-95.
RGD ID: 633586
Pubmed: PMID:1512265   (View Abstract at PubMed)

The developmental expression of the alpha, beta, and gamma subunits of skeletal muscle phosphorylase kinase has been examined in regenerating muscle. Rat extensor digitorum longus (EDL) muscles, treated with bupivacaine, promptly undergo a rapid degeneration of the muscle, followed by regeneration and recovery of essentially normal morphology and physiology by 3-4 weeks post-treatment (Hall-Craggs, E. C. B., and Seyan, H. S. (1975) Exp. Neurol. 46, 345-354). Phosphorylase kinase activity dropped to approximately 10% of control within 3 days of bupivacaine treatment and remained at this low level for several days but had attained at least 60% of normal levels by day 21. The pH 6.8/8.2 activity ratio was unusually high during the period of low activity, suggesting that the catalytic activity was not under normal regulation at this time. The subunit mRNAs were readily detected in control EDL but were undetectable at day 3 post-bupivacaine treatment. Very small amounts of message for all three subunits were evident by day 6 and began to approach normal levels by day 12-15. The mRNA for both the alpha and alpha' subunits of phosphorylase kinase exhibited a similar pattern of recovery, as did also the mRNA for phosphorylase. In contrast to both phosphorylase kinase and phosphorylase, actin mRNA exhibited a quite a different pattern, with a nearly full recovery of message levels by day 6 post-bupivacaine. These data indicate that synthesis of phosphorylase and the alpha, beta, and gamma subunits of phosphorylase kinase appears to be coordinately regulated at the level of message accumulation and that the expression of phosphorylase kinase activity is likely to be also regulated post-transcriptionally.

Objects referenced in this article
Gene Phkb phosphorylase kinase regulatory subunit beta Rattus norvegicus

Additional Information