RGD Reference Report - Analysis of the Human Mucosal Response to Cholera Reveals Sustained Activation of Innate Immune Signaling Pathways. - Rat Genome Database

Send us a Message

Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Analysis of the Human Mucosal Response to Cholera Reveals Sustained Activation of Innate Immune Signaling Pathways.

Authors: Bourque, Daniel L  Bhuiyan, Taufiqur Rahman  Genereux, Diane P  Rashu, Rasheduzzaman  Ellis, Crystal N  Chowdhury, Fahima  Khan, Ashraful I  Alam, Nur Haq  Paul, Anik  Hossain, Lazina  Mayo-Smith, Leslie M  Charles, Richelle C  Weil, Ana A  LaRocque, Regina C  Calderwood, Stephen B  Ryan, Edward T  Karlsson, Elinor K  Qadri, Firdausi  Harris, Jason B 
Citation: Bourque DL, etal., Infect Immun. 2018 Jan 22;86(2). pii: IAI.00594-17. doi: 10.1128/IAI.00594-17. Print 2018 Feb.
RGD ID: 40925924
Pubmed: PMID:29133347   (View Abstract at PubMed)
PMCID: PMC5778365   (View Article at PubMed Central)
DOI: DOI:10.1128/IAI.00594-17   (Journal Full-text)

To better understand the innate immune response to Vibrio cholerae infection, we tracked gene expression in the duodenal mucosa of 11 Bangladeshi adults with cholera, using biopsy specimens obtained immediately after rehydration and 30 and 180 days later. We identified differentially expressed genes and performed an analysis to predict differentially regulated pathways and upstream regulators. During acute cholera, there was a broad increase in the expression of genes associated with innate immunity, including activation of the NF-κB, mitogen-activated protein kinase (MAPK), and Toll-like receptor (TLR)-mediated signaling pathways, which, unexpectedly, persisted even 30 days after infection. Focusing on early differences in gene expression, we identified 37 genes that were differentially expressed on days 2 and 30 across the 11 participants. These genes included the endosomal Toll-like receptor gene TLR8, which was expressed in lamina propria cells. Underscoring a potential role for endosomal TLR-mediated signaling in vivo, our pathway analysis found that interferon regulatory factor 7 and beta 1 and alpha 2 interferons were among the top upstream regulators activated during cholera. Among the innate immune effectors, we found that the gene for DUOX2, an NADPH oxidase involved in the maintenance of intestinal homeostasis, was upregulated in intestinal epithelial cells during cholera. Notably, the observed increases in DUOX2 and TLR8 expression were also modeled in vitro when Caco-2 or THP-1 cells, respectively, were stimulated with live V. cholerae but not with heat-killed organisms or cholera toxin alone. These previously unidentified features of the innate immune response to V. cholerae extend our understanding of the mucosal immune signaling pathways and effectors activated in vivo following cholera.

RGD Manual Disease Annotations    Click to see Annotation Detail View
TermQualifierEvidenceWithReferenceNotesSourceOriginal Reference(s)
cholera treatmentIEP 40925924 RGD 
cholera treatmentISODUOX2 (Homo sapiens)40925924; 40925924 RGD 

Objects Annotated

Genes (Rattus norvegicus)
Duox2  (dual oxidase 2)

Genes (Mus musculus)
Duox2  (dual oxidase 2)

Genes (Homo sapiens)
DUOX2  (dual oxidase 2)

Additional Information