RGD Reference Report - IL-33/ST2 signaling contributes to radicular pain by modulating MAPK and NF-κB activation and inflammatory mediator expression in the spinal cord in rat models of noncompressive lumber disk herniation. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

IL-33/ST2 signaling contributes to radicular pain by modulating MAPK and NF-κB activation and inflammatory mediator expression in the spinal cord in rat models of noncompressive lumber disk herniation.

Authors: Huang, Si-Jian  Yan, Jian-Qin  Luo, Hui  Zhou, Lu-Yao  Luo, Jian-Gang 
Citation: Huang SJ, etal., J Neuroinflammation. 2018 Jan 12;15(1):12. doi: 10.1186/s12974-017-1021-4.
RGD ID: 40400909
Pubmed: PMID:29329586   (View Abstract at PubMed)
PMCID: PMC5766999   (View Article at PubMed Central)
DOI: DOI:10.1186/s12974-017-1021-4   (Journal Full-text)


BACKGROUND: Immune and inflammatory responses occurring in the spinal cord play a pivotal role in the progression of radicular pain caused by intervertebral disk herniation. Interleukin-33 (IL-33) orchestrates inflammatory responses in a wide range of inflammatory and autoimmune disorders of the nervous system. Thus, the purpose of this study is to investigate the expression of IL-33 and its receptor ST2 in the dorsal spinal cord and to elucidate whether the inhibition of spinal IL-33 expression significantly attenuates pain-related behaviors in rat models of noncompressive lumbar disc herniation.
METHODS: Lentiviral vectors encoding short hairpin RNAs that target IL-33 (LV-shIL-33) were constructed for gene silencing. Rat models of noncompressive lumber disk herniation were established, and the spines of rats were injected with LV-shIL-33 (5 or 10 μl) on the first day after the operation. Mechanical thresholds were evaluated during an observation period of 21 days. Moreover, the expression levels of spinal tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and cyclooxygenase 2 (COX-2) and the activation of the mitogen-activated protein kinases (MAPK) and nuclear factor-κB (NF-κB) pathways were evaluated to gain insight into the mechanisms related to the contribution of IL-33/ST2 signaling to radicular pain.
RESULTS: The application of nucleus pulposus (NP) to the dorsal root ganglion (DRG) induced an increase in IL-33 and ST2 expression in the spinal cord, mainly in the dorsal horn neurons, astrocytes, and oligodendrocytes. Spinally delivered LV-shIL-33 knocked down the expression of IL-33 and markedly attenuated mechanical allodynia. In addition, spinal administration of LV-shIL-33 reduced the overexpression of spinal IL-1β, TNF-α, and COX-2 and attenuated the activation of C-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and NF-κB/p65 but not p38.
CONCLUSIONS: This study indicates that spinal IL-33/ST2 signaling plays an important role in the development and progression of radicular pain in rat models of noncompressive lumber disk herniation. Thus, the inhibition of spinal IL-33 expression may provide a potential treatment to manage radicular pain caused by intervertebral disk herniation.

RGD Manual Disease Annotations    Click to see Annotation Detail View
TermQualifierEvidenceWithReferenceNotesSourceOriginal Reference(s)
Hyperalgesia  ISOIl33 (Rattus norvegicus)40400909; 40400909 RGD 
Hyperalgesia  IMP 40400909 RGD 
Intervertebral Disc Displacement  ISOIl1rl1 (Rattus norvegicus)40400909; 40400909protein:increased expression:spinal cord:RGD 
Intervertebral Disc Displacement  ISOIl33 (Rattus norvegicus)40400909; 40400909protein:increased expression:spinal cord:RGD 
Intervertebral Disc Displacement  IEP 40400909; 40400909protein:increased expression:spinal cord:RGD 

Objects Annotated

Genes (Rattus norvegicus)
Il1rl1  (interleukin 1 receptor-like 1)
Il33  (interleukin 33)

Genes (Mus musculus)
Il1rl1  (interleukin 1 receptor-like 1)
Il33  (interleukin 33)

Genes (Homo sapiens)
IL1RL1  (interleukin 1 receptor like 1)
IL33  (interleukin 33)


Additional Information