Male hypogonadism (hgn/hgn) rats show testicular hypoplasia accompanied by dysplastic development of seminiferous tubules due to loss-of-function mutation of the gene encoding Astrin, which is required for mitotic progression in the division cycle of HeLa cells. In the present study, we examined the cytological base leading to the decrease of Sertoli cells in hgn/hgn testes. In hgn/hgn testes on postnatal day 3, anti-phospho-histone H3 (Ser10) (pH3)-positive mitotic phase and TUNEL-positive apoptosis increased in GATA4-positive Sertoli cells. Isolated immature Sertoli cells from hgn/hgn testes showed increased pH3-assessed mitotic index accompanied by decreased 5-bromo-2'-deoxyuridine-incorporation and increased TUNEL-positive apoptosis, suggesting mitotic delay and cell death. In the visualization of mitotic progression by nocodazole (NOC)-mediated cell cycle arrest and subsequent release, hgn/hgn rat-derived Sertoli cells failed to make the transition from prometaphase to metaphase, and the cells with micronuclei and TUNEL-positive cells gradually increased in a time-dependent manner. Western blot analysis detected ≈142 kDa protein expected as Astrin in extracts of +/+ and +/hgn testes and cultured normal Sertoli cells but not in extracts of hgn/hgn testes. CLASP1 was detected in extracts of both normal and hgn/hgn testes, whereas it was localized in kinetochore of normal mitotic Sertoli cells but diffused in cytoplasm of hgn/hgn Sertoli cells. These results indicate that Astrin is required for normal mitotic progression in immature Sertoli cells and that the most severe type of testicullar dysplasia in hgn/hgn rats is caused by mitotic cell death of immature Sertoli cells due to lack of Astrin.