RGD Reference Report - Heat shock protein 60 or 70 activates nitric-oxide synthase (NOS) I- and inhibits NOS II-associated signaling and depresses the mitochondrial apoptotic cascade during brain stem death. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Heat shock protein 60 or 70 activates nitric-oxide synthase (NOS) I- and inhibits NOS II-associated signaling and depresses the mitochondrial apoptotic cascade during brain stem death.

Authors: Chan, JY  Cheng, HL  Chou, JL  Li, FC  Dai, KY  Chan, SH  Chang, AY 
Citation: Chan JY, etal., J Biol Chem. 2007 Feb 16;282(7):4585-600. Epub 2006 Dec 5.
RGD ID: 1624231
Pubmed: PMID:17150954   (View Abstract at PubMed)
DOI: DOI:10.1074/jbc.M603394200   (Journal Full-text)

The cellular and molecular basis of brain stem death remains an enigma. As the origin of a "life-and-death" signal that reflects the progression toward brain stem death, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate for mechanistic delineation of this phenomenon. Here, we evaluated the hypothesis that heat shock proteins (HSPs) play a neuroprotective role in the RVLM during brain stem death and delineated the underlying mechanisms, using a clinically relevant animal model that employed the organophosphate pesticide mevinphos (Mev) as the experimental insult. In Sprague-Dawley rats, proteomic, Western blot, and real-time PCR analyses demonstrated that Mev induced de novo synthesis of HSP60 or HSP70 in the RVLM without affecting HSP90 level. Loss-of-function manipulations of HSP60 or HSP70 in the RVLM using anti-serum or antisense oligonucleotide potentiated Mev-elicited cardiovascular depression alongside reduced nitric-oxide synthase (NOS) I/protein kinase G signaling, enhanced NOS II/peroxynitrite cascade, intensified nucleosomal DNA fragmentation, elevated cytoplasmic histone-associated DNA fragments or activated caspase-3, and augmented the cytochrome c/caspase-3 cascade of apoptotic signaling in the RVLM. Co-immunoprecipitation experiments further revealed a progressive increase in the complex formed between HSP60 and mitochondrial or cytosolic Bax or mitochondrial Bcl-2 during Mev intoxication, alongside a dissociation of the cytosolic HSP60-Bcl-2 complex. We conclude that HSP60 and HSP70 confer neuroprotection against Mev intoxication by ameliorating cardiovascular depression via an anti-apoptotic action in the RVLM. The possible underlying intracellular processes include enhancing NOS I/protein kinase G signaling and inhibiting the NOS II/peroxynitrite cascade. In addition, HSP60 exerts its effects against apoptosis by blunting Mev-induced activation of the Bax/cytochrome c/caspase-3 cascade.

Gene Ontology Annotations    Click to see Annotation Detail View

Biological Process
TermQualifierEvidenceWithReferenceNotesSourceOriginal Reference(s)
negative regulation of neuron apoptotic process  IMP 1624231 RGD 

Objects Annotated

Genes (Rattus norvegicus)
Hspd1  (heat shock protein family D (Hsp60) member 1)


Additional Information