RGD Reference Report - Activation of MyoD-dependent transcription by cdk9/cyclin T2. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Activation of MyoD-dependent transcription by cdk9/cyclin T2.

Authors: Simone, C  Stiegler, P  Bagella, L  Pucci, B  Bellan, C  De Falco, G  De Luca, A  Guanti, G  Puri, PL  Giordano, A 
Citation: Simone C, etal., Oncogene 2002 Jun 13;21(26):4137-48.
RGD ID: 1556508
Pubmed: PMID:12037670   (View Abstract at PubMed)
DOI: DOI:10.1038/sj.onc.1205493   (Journal Full-text)

Myogenic transcription is repressed in myoblasts by serum-activated cyclin-dependent kinases, such as cdk2 and cdk4. Serum withdrawal promotes muscle-specific gene expression at least in part by down-regulating the activity of these cdks. Unlike the other cdks, cdk9 is not serum- or cell cycle-regulated and is instead involved in the regulation of transcriptional elongation by phosphorylating the carboxyl-terminal domain (CTD) of RNA polymerase II. While ectopic expression of cdk2 together with its regulatory subunits (cyclins E and A) inhibits myogenic transcription, overproduction of cdk9 and its associated cyclin (cyclin T2a) strengthens MyoD-dependent transcription and stimulates myogenic differentiation in both MyoD-converted fibroblasts and C2C12 muscle cells. Conversely, inhibition of cdk9 activity by a dominant negative form (cdk9-dn) represses the myogenic program. Cdk9, cyclinT2 and MyoD can be detected in a multimeric complex in C2C12 cells, with the minimal cdk9-binding region of MyoD mapping within 101-161 aa of the bHLH region. Finally, cdk9 can phosphorylate MyoD in vitro, suggesting the possibility that cdk9/cycT2a regulation of muscle differentiation includes the direct enzymatic activity of the kinase on MyoD.

Objects referenced in this article
Gene Cdk9 cyclin-dependent kinase 9 Rattus norvegicus

Additional Information