Hypertonic-induced cell shrinkage increases glucose release in H-4-II-E rat hepatoma cells. This is paralleled by a concomitant increase in the mRNA levels of the rate-limiting enzymes of the pathway of gluconeogenesis, phosphoenolpyruvate carboxykinase (PCK) and fructose-1,6-bisphosphatase (FBP), of seven- and fivefold, respectively. In contrast, hypotonic-induced swelling of the cells results in a transient decrease in PCK and FBP mRNAs to 15% and 39% of control levels. The antagonistic effects of hyper- and hypotonicity mimic the counteracting effects of adenosine 3',5'-cyclic monophosphate (cAMP) and insulin on PCK and FBP mRNA levels. The hypertonic-induced increase in mRNA levels is due to an enhanced transcriptional rate, whereas the decrease in mRNAs caused by hypotonicity results from a decrease in transcription as well as mRNA stability. The inductive effect of hypertonicity does not require ongoing protein synthesis and acts independently of the cAMP-dependent protein kinase and protein kinase C pathways. These results suggest that cell volume changes in liver cells may play an important role in regulating hepatic glucose metabolism by altered gene expression.