RGD Reference Report - Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2).

Authors: Takamori, S  Rhee, J S  Rosenmund, C  Jahn, R 
Citation: Takamori S, etal., J Neurosci. 2001 Nov 15;21(22):RC182.
RGD ID: 151665727
Pubmed: PMID:11698620   (View Abstract at PubMed)
PMCID: PMC6762262   (View Article at PubMed Central)

Glutamate is the major excitatory neurotransmitter in mammalian CNS. In the presynaptic nerve terminal, glutamate is stored in synaptic vesicles and released by exocytosis. Previously, it has been shown that a transport protein originally identified as a brain-specific Na(+)-dependent inorganic phosphate transporter I (BNPI) functions as vesicular glutamate transporter and thus has been renamed VGLUT1. Recently, a protein highly homologous to VGLUT1, "differentiation-associated BNPI" (DNPI), has been discovered. Northern blot and in situ hybridization analyses indicate that DNPI mRNA is expressed in some brain regions in which VGLUT1 mRNA is not expressed. We now show that DNPI functions as vesicular glutamate transporter with properties very similar to VGLUT1 and propose to rename the protein VGLUT2. VGLUT2 is highly enriched in synaptic vesicles. Furthermore, VGLUT2 resides on a vesicle population that is distinct from vesicles containing the vesicular GABA transporter or VGLUT1, showing that the expression of VGLUT1 and VGLUT2 do not overlap. When VGLUT2 was expressed in BON cells, membrane fractions displayed ATP-dependent, carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive glutamate uptake. Overexpression of VGLUT2 in cultured autaptic GABAergic neurons yielded postsynaptic currents that were insensitive to the GABA(A) receptor antagonist bicuculline but blocked by the AMPA-receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[F]quinoxaline. Thus, expression of VGLUT2 suffices to cause GABAergic neurons to release glutamate in addition to GABA in a manner very similar to that reported previously for VGLUT1.



Gene Ontology Annotations    Click to see Annotation Detail View

Cellular Component

  
Object SymbolSpeciesTermQualifierEvidenceWithNotesSourceOriginal Reference(s)
Slc17a6Ratsynaptic vesicle located_inIDA PMID:11698620UniProt 

Objects Annotated

Genes (Rattus norvegicus)
Slc17a6  (solute carrier family 17 member 6)


Additional Information