RGD Reference Report - Impaired neural differentiation and glymphatic CSF flow in the Ccdc39 rat model of neonatal hydrocephalus: genetic interaction with L1cam. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Impaired neural differentiation and glymphatic CSF flow in the Ccdc39 rat model of neonatal hydrocephalus: genetic interaction with L1cam.

Authors: Emmert, A Scott  Iwasawa, Eri  Shula, Crystal  Schultz, Preston  Lindquist, Diana  Dunn, R Scott  Fugate, Elizabeth M  Hu, Yueh-Chiang  Mangano, Francesco T  Goto, June 
Citation: Emmert AS, etal., Dis Model Mech. 2019 Nov 21;12(11). pii: 12/11/dmm040972. doi: 10.1242/dmm.040972.
RGD ID: 150521527
Pubmed: PMID:31771992   (View Abstract at PubMed)
PMCID: PMC6898999   (View Article at PubMed Central)
DOI: DOI:10.1242/dmm.040972   (Journal Full-text)

Neonatal hydrocephalus affects about one child per 1000 births and is a major congenital brain abnormality. We previously discovered a gene mutation within the coiled-coil domain-containing 39 (Ccdc39) gene, which causes the progressive hydrocephalus (prh) phenotype in mice due to lack of ependymal-cilia-mediated cerebrospinal fluid (CSF) flow. In this study, we used CRISPR/Cas9 to introduce the Ccdc39 gene mutation into rats, which are more suitable for imaging and surgical experiments. The Ccdc39prh/prh mutants exhibited mild ventriculomegaly at postnatal day (P)5 that progressed into severe hydrocephalus by P11 (P<0.001). After P11, macrophage and neutrophil invasion along with subarachnoid hemorrhage were observed in mutant brains showing reduced neurofilament density, hypomyelination and increased cell death signals compared with wild-type brains. Significantly more macrophages entered the brain parenchyma at P5 before hemorrhaging was noted and increased expression of a pro-inflammatory factor (monocyte chemoattractant protein-1) was found in the cortical neural and endothelial cells in the mutant brains at P11. Glymphatic-mediated CSF circulation was progressively impaired along the middle cerebral artery from P11 as mutants developed severe hydrocephalus (P<0.001). In addition, Ccdc39prh/prh mutants with L1 cell adhesion molecule (L1cam) gene mutation, which causes X-linked human congenital hydrocephalus, showed an accelerated early hydrocephalus phenotype (P<0.05-0.01). Our findings in Ccdc39prh/prh mutant rats demonstrate a possible causal role of neuroinflammation in neonatal hydrocephalus development, which involves impaired cortical development and glymphatic CSF flow. Improved understanding of inflammatory responses and the glymphatic system in neonatal hydrocephalus could lead to new therapeutic strategies for this condition.This article has an associated First Person interview with the joint first authors of the paper.



RGD Manual Disease Annotations    Click to see Annotation Detail View

  
Object SymbolSpeciesTermQualifierEvidenceWithNotesSourceOriginal Reference(s)
CCDC39Humanhydrocephalus  ISORGD:1306277 RGD 
Ccdc39Rathydrocephalus  IMP  RGD 
Ccdc39Mousehydrocephalus  ISORGD:1306277 RGD 
Ccdc39em1JgnRathydrocephalus  IMP  RGD 
SD-Ccdc39em1JgnRathydrocephalus  IMP  RGD 
CCDC39HumanVentriculomegaly  ISORGD:1306277 RGD 
Ccdc39RatVentriculomegaly  IMP  RGD 
Ccdc39MouseVentriculomegaly  ISORGD:1306277 RGD 
Ccdc39em1JgnRatVentriculomegaly  IMP  RGD 
SD-Ccdc39em1JgnRatVentriculomegaly  IMP  RGD 

Phenotype Annotations    Click to see Annotation Detail View

Mammalian Phenotype

Object SymbolSpeciesTermQualifierEvidenceWithNotesSourceOriginal Reference(s)
Ccdc39Ratabnormal cerebrospinal fluid flow  IMP  RGD 
Ccdc39em1JgnRatabnormal cerebrospinal fluid flow  IMP  RGD 
SD-Ccdc39em1JgnRatabnormal cerebrospinal fluid flow  IMP  RGD 
Ccdc39Ratabnormal glymphatic system physiology  IMP  RGD 
Ccdc39em1JgnRatabnormal glymphatic system physiology  IMP  RGD 
SD-Ccdc39em1JgnRatabnormal glymphatic system physiology  IMP  RGD 
Ccdc39Ratdilated lateral ventricle  IMP  RGD 
Ccdc39em1JgnRatdilated lateral ventricle  IMP  RGD 
SD-Ccdc39em1JgnRatdilated lateral ventricle  IMP  RGD 
Ccdc39Ratdysmyelination  IMP  RGD 
Ccdc39em1JgnRatdysmyelination  IMP  RGD 
SD-Ccdc39em1JgnRatdysmyelination  IMP  RGD 
Ccdc39Rathydrocephaly  IMP  RGD 
Ccdc39em1JgnRathydrocephaly  IMP  RGD 
SD-Ccdc39em1JgnRathydrocephaly  IMP  RGD 
Ccdc39Ratincreased apoptosis  IMP  RGD 
Ccdc39em1JgnRatincreased apoptosis  IMP  RGD 
SD-Ccdc39em1JgnRatincreased apoptosis  IMP  RGD 
Ccdc39Ratincreased macrophage cell number  IMP  RGD 
Ccdc39em1JgnRatincreased macrophage cell number  IMP  RGD 
SD-Ccdc39em1JgnRatincreased macrophage cell number  IMP  RGD 
Ccdc39Ratincreased neutrophil cell number  IMP  RGD 
Ccdc39em1JgnRatincreased neutrophil cell number  IMP  RGD 
SD-Ccdc39em1JgnRatincreased neutrophil cell number  IMP  RGD 
Ccdc39Ratintracranial hemorrhage  IMP  RGD 
Ccdc39em1JgnRatintracranial hemorrhage  IMP  RGD 
SD-Ccdc39em1JgnRatintracranial hemorrhage  IMP  RGD 
Ccdc39Ratpostnatal growth retardation  IMP  RGD 
Ccdc39em1JgnRatpostnatal growth retardation  IMP  RGD 
SD-Ccdc39em1JgnRatpostnatal growth retardation  IMP  RGD 
Ccdc39Ratpremature death  IMP  RGD 
Ccdc39em1JgnRatpremature death  IMP  RGD 
SD-Ccdc39em1JgnRatpremature death  IMP  RGD 
Ccdc39Ratsubarachnoid hemorrhage  IMP  RGD 
Ccdc39em1JgnRatsubarachnoid hemorrhage  IMP  RGD 
SD-Ccdc39em1JgnRatsubarachnoid hemorrhage  IMP  RGD 
Objects Annotated

Genes (Rattus norvegicus)
Ccdc39  (coiled-coil domain 39 molecular ruler complex subunit)
Ccdc39em1Jgn  (coiled-coil domain containing 39; CRISPR/Cas9 induced mutant 1, Jgn)

Genes (Mus musculus)
Ccdc39  (coiled-coil domain containing 39)

Genes (Homo sapiens)
CCDC39  (coiled-coil domain 39 molecular ruler complex subunit)

Strains
SD-Ccdc39em1Jgn  (NA)


Additional Information