Submit Data |  Help |  Video Tutorials |  News |  Publications |  FTP Download |  REST API |  Citing RGD |  Contact   

Mitochondrial coupling factor 6 as a potent endogenous vasoconstrictor.

Authors: Osanai, T  Tanaka, M  Kamada, T  Nakano, T  Takahashi, K  Okada, S  Sirato, K  Magota, K  Kodama, S  Okumura, K 
Citation: Osanai T, etal., J Clin Invest. 2001 Oct;108(7):1023-30. doi: 10.1172/JCI11076.
Pubmed: (View Article at PubMed) PMID:11581303
DOI: Full-text: DOI:10.1172/JCI11076

We demonstrated recently that coupling factor 6, an essential component of the energy-transducing stalk of mitochondrial ATP synthase, suppresses the synthesis of prostacyclin in vascular endothelial cells. Here, we tested the hypothesis that coupling factor 6 is present on the cell surface and is involved in the regulation of systemic circulation. This peptide is present on the surface of CRL-2222 vascular endothelial cells and is released by these cells into the medium. In vivo, the peptide circulates in the vascular system of the rat, and its gene expression and plasma concentration are higher in spontaneously hypertensive rats (SHRs) than in normotensive controls. Elevation of blood pressure with norepinephrine did not affect the plasma concentration of coupling factor 6. Intravenous injection of recombinant peptide increased blood pressure, apparently by suppressing prostacyclin synthesis, whereas a specific Ab to coupling factor 6 decreased systemic blood pressure concomitantly with an increase in plasma prostacyclin. Interestingly, the antibody's hypotensive effect could be abolished by treating with the cyclooxygenase inhibitor indomethacin. These findings indicate that mitochondrial coupling factor 6 functions as a potent endogenous vasoconstrictor in the fashion of a circulating hormone and may suggest a new mechanism for hypertension.

Annotation

Gene Ontology Annotations
Objects Annotated

Additional Information

 
RGD Object Information
RGD ID: 13800911
Created: 2018-10-22
Species: All species
Last Modified: 2018-10-22
Status: ACTIVE



NHLBI Logo

RGD is funded by grant HL64541 from the National Heart, Lung, and Blood Institute on behalf of the NIH.