RGD Reference Report - Identification of a mouse short-chain dehydrogenase/reductase gene, retinol dehydrogenase-similar. Function of non-catalytic amino acid residues in enzyme activity. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Identification of a mouse short-chain dehydrogenase/reductase gene, retinol dehydrogenase-similar. Function of non-catalytic amino acid residues in enzyme activity.

Authors: Song, MS  Chen, W  Zhang, M  Napoli, JL 
Citation: Song MS, etal., J Biol Chem 2003 Oct 10;278(41):40079-87. Epub 2003 Jul 10.
RGD ID: 1359056
Pubmed: PMID:12855677   (View Abstract at PubMed)
DOI: DOI:10.1074/jbc.M304910200   (Journal Full-text)

We report a mouse short-chain dehydrogenase/reductase (SDR), retinol dehydrogenase-similar (RDH-S), with intense mRNA expression in liver and kidney. The RDH-S gene localizes to chromosome 10D3 with the SDR subfamily that catalyzes metabolism of retinoids and 3 alpha-hydroxysteroids. RDH-S has no activity with prototypical retinoid/steroid substrates, despite 92% amino acid similarity to mouse RDH1. This afforded the opportunity to analyze for functions of non-catalytic SDR residues. We produced RDH-S Delta 3 by mutating RDH-S to remove an "additional" Asn residue relative to RDH1 in its center, to convert three residues into RDH1 residues (L121P, S122N, and Q123E), and to substitute RDH1 sequence G208FKTCVTSSD for RDH-S sequence F208-FLTGMASSA. RDH-S Delta 3 catalyzed all-trans-retinol and 5 alpha-androstane-3 alpha,17 alpha-diol (3 alpha-adiol) metabolism 60-70% as efficiently (Vm/Km) as RDH1. Conversely, substituting RDH-S sequence F208FLTGMASSA into RDH1 produced a chimera (viz. C3) that was inactive with all-trans-retinol, but was 4-fold more efficient with 3 alpha-adiol. A single RDH1 mutation in the C3 region (K210L) reduced efficiency for all-trans-retinol by >1250-fold. In contrast, the C3 area mutation C212G enhanced efficiency with all-trans-retinol by approximately 2.4-fold. This represents a >6000-fold difference in catalytic efficiency for two enzymes that differ by a single non-catalytic amino acid residue. Another chimera (viz. C5) retained efficiency with all-trans-retinol, but was not saturated and was weakly active with 3 alpha-adiol, stemming from three residue differences (K224Q, K229Q, and A230T). The residues studied contribute to the substrate-binding pocket: molecular modeling indicated that they would affect orientation of substrates with the catalytic residues. These data report a new member of the SDR gene family, provide insight into the function of non-catalytic SDR residues, and illustrate that limited changes in the multifunctional SDR yield major alterations in substrate specificity and/or catalytic efficiency.

Objects referenced in this article
Gene Sdr9c7 short chain dehydrogenase/reductase family 9C, member 7 Rattus norvegicus

Additional Information