RGD Reference Report - Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya.

Authors: Ohto, H  Kamada, S  Tago, K  Tominaga, SI  Ozaki, H  Sato, S  Kawakami, K 
Citation: Ohto H, etal., Mol Cell Biol 1999 Oct;19(10):6815-24.
RGD ID: 1303343
Pubmed: PMID:10490620   (View Abstract at PubMed)
PMCID: PMC84678   (View Article at PubMed Central)

Drosophila sine oculis and eyes absent genes synergize in compound-eye formation. The murine homologues of these genes, Six and Eya, respectively, show overlapping expression patterns during development. We hypothesized that Six and Eya proteins cooperate to regulate their target genes. Cotransfection assays were performed with various combinations of Six and Eya to assess their effects on a potential natural target, myogenin promoter, and on a synthetic promoter, the thymidine kinase gene promoter fused to multimerized Six4 binding sites. A clear synergistic activation of these promoters was observed in certain combinations of Six and Eya. To investigate the molecular basis for the cooperation, we first examined the intracellular distribution of Six and Eya proteins in transfected COS7 cells. Coexpression of Six2, Six4, or Six5 induced nuclear translocation of Eya1, Eya2, and Eya3, which were otherwise distributed in the cytoplasm. In contrast, coexpression of Six3 did not result in nuclear localization of any Eya proteins. Six and Eya proteins were coimmunoprecipitated from nuclear extracts prepared from cotransfected COS7 cells and from rat liver. Six domain and homeodomain, two evolutionarily conserved domains among various Six proteins, were necessary and sufficient for the nuclear translocation of Eya. In contrast, the Eya domain, a conserved domain among Eya proteins, was not sufficient for the translocation. A specific interaction between the Six domain and homeodomain of Six4 and Eya2 was observed by yeast two-hybrid analysis. Our results suggest that transcription regulation of certain target genes by Six proteins requires cooperative interaction with Eya proteins: complex formation through direct interaction and nuclear translocation of Eya proteins. This implies that the synergistic action of Six and Eya is conserved in the mouse and is mediated through cooperative activation of their target genes.

Gene Ontology Annotations    Click to see Annotation Detail View

Molecular Function
TermQualifierEvidenceWithReferenceNotesSourceOriginal Reference(s)
protein binding  IPISix5 (Rattus norvegicus)1303343 RGD 
protein binding  IPIEya3 (Rattus norvegicus)1303343 RGD 

Objects Annotated

Genes (Rattus norvegicus)
Eya3  (EYA transcriptional coactivator and phosphatase 3)
Six5  (SIX homeobox 5)

Objects referenced in this article
Gene Eya2 EYA transcriptional coactivator and phosphatase 2 Rattus norvegicus

Additional Information