Submit Data |  Help |  Video Tutorials |  News |  Publications |  FTP Download |  REST API |  Citing RGD |  Contact   

Baicalein protects against retinal ischemia by antioxidation, antiapoptosis, downregulation of HIF-1alpha, VEGF, and MMP-9 and upregulation of HO-1.

Authors: Chao, HM  Chuang, MJ  Liu, JH  Liu, XQ  Ho, LK  Pan, WH  Zhang, XM  Liu, CM  Tsai, SK  Kong, CW  Lee, SD  Chen, MM  Chao, FP 
Citation: Chao HM, etal., J Ocul Pharmacol Ther. 2013 Jul-Aug;29(6):539-49. doi: 10.1089/jop.2012.0179. Epub 2013 Mar 28.
Pubmed: (View Article at PubMed) PMID:23537149
DOI: Full-text: DOI:10.1089/jop.2012.0179

PURPOSE: Retinal ischemia-associated ocular disorders are vision threatening. This study examined whether the flavonoid baicalein is able to protect against retinal ischemia/reperfusion. METHODS: Using rats, the intraocular pressure was raised to 120 mmHg for 60 min to induce retinal ischemia. In vitro, an ischemic-like insult, namely oxidative stress, was established by incubating dissociated retinal cells with 100 muM ascorbate and 5 muM FeSO4 (iron) for 1 h. The rats or the dissociated cells had been pretreated with baicalein (in vivo: 0.05 or 0.5 nmol; in vitro: 100 muM), vehicle (1% ethanol), or trolox (in vivo: 5 nmol; in vitro: 100 muM or 1 mM). The effects of these treatments on the retina or the retinal cells were evaluated by electrophysiology, immunohistochemistry, terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling (TUNEL) staining, Western blotting, or in vitro dichlorofluorescein assay. In addition, real-time-polymerase chain reaction was used to assess the retinal expression of hypoxia-inducible factor-1alpha (HIF-1alpha), matrix metalloproteinase-9 (MMP-9), vascular endothelium growth factor (VEGF), and heme oxygenase-1 (HO-1). RESULTS: The retinal changes after ischemia included a decrease in the electroretinogram b-wave amplitude, a loss of choline acetyltransferase immunolabeling amacrine cell bodies/neuronal processes, an increase in vimentin immunoreactivity, which is a marker for Muller cells, an increase in apoptotic cells in the retinal ganglion cell layer linked to a decrease in the Bcl-2 protein, and changes in the mRNA levels of HIF-1alpha, VEGF, MMP-9, and HO-1. Of clinical importance, the ischemic detrimental effects were concentration dependently and/or significantly (0.05 nmol and/or 0.5 nmol) altered when baicalein was applied 15 min before retinal ischemia. Most of all, 0.5 nmol baicalein significantly reduced the upregulation of MMP-9; in contrast, 5 nmol trolox only had a weak attenuating effect. In dissociated retinal cells subjected to ascorbate/iron, there was an increase in the levels of reactive oxygen species, which had been significantly attenuated by 100 muM baicalein and trolox (100 muM or 1 mM; a stronger antioxidative effect at 1 mM). CONCLUSIONS: Baicalein would seem to protect against retinal ischemia via antioxidation, antiapoptosis, upregulation of HO-1, and downregulation of HIF-1alpha, VEGF, and MMP-9. The antioxidative effect of baicalein would appear to play a minor role in downregulation of MMP-9.


Disease Annotations
Objects Annotated

Additional Information

RGD Object Information
RGD ID: 10755711
Created: 2016-02-03
Species: All species
Last Modified: 2016-02-03
Status: ACTIVE


RGD is funded by grant HL64541 from the National Heart, Lung, and Blood Institute on behalf of the NIH.