Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

CROSS-SPECIES ANATOMY - ANNOTATIONS

The Basic subset of the UBERON integrated, cross-species anatomy ontology is downloaded weekly from http://berkeleybop.org/ontologies/uberon/basic.obo. For more information about this ontology see the "About" page on the UBERON website at http://uberon.github.io/about.html.

Term:sheath of Schwann
go back to main search page
Accession:UBERON:0001031 term browser browse the term
Definition:The outermost nucleated cytoplasmic layer of Schwann cells that surrounds the axon of the neuron. It forms the outermost layer of the nerve fiber in the peripheral nervous system. The neurolemma is underlain by the basal lamina (referred to as the medullary sheath in the included illustrations. In CNS, axons are myelinated by oligodendrocytes, thus lack neurolemma.
Synonyms:exact_synonym: neurilemma;   neurolemma
 related_synonym: Schwann's membrane;   endoneural membrane
 xref: BTO:0003048;   FMA:62976;   GAID:730;   MESH:D009441;   NCI:C33544;   UMLS:C0027807;   Wikipedia:Neurilemma



show annotations for term's descendants           Sort by:

Term paths to the root
Path 1
Term Annotations click to browse term
  UBERON ontology 0
    anatomical entity 0
      material anatomical entity 0
        anatomical structure 0
          anatomical system 0
            nervous system 0
              peripheral nervous system 0
                sheath of Schwann 0
Path 2
Term Annotations click to browse term
  UBERON ontology 0
    anatomical entity 0
      material anatomical entity 0
        anatomical structure 0
          multicellular anatomical structure 0
            multicellular organism 0
              embryo 0
                embryonic structure 0
                  presumptive structure 0
                    future nervous system 0
                      nervous system 0
                        peripheral nervous system 0
                          sheath of Schwann 0
paths to the root