RGD Reference Report - Altered uterine perfusion is involved in fetal outcome of diabetic rats. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Altered uterine perfusion is involved in fetal outcome of diabetic rats.

Authors: Zabihi, S  Wentzel, P  Eriksson, UJ 
Citation: Zabihi S, etal., Placenta. 2008 May;29(5):413-21. Epub 2008 Apr 2.
RGD ID: 2306607
Pubmed: PMID:18387670   (View Abstract at PubMed)
DOI: DOI:10.1016/j.placenta.2008.02.005   (Journal Full-text)

Maternal diabetes affects the development of the offspring by altering the uterine environment. We aimed to investigate the extent to which the blood flow (measured as Tissue Perfusion Units; TPU) to implantation sites and the expression of developmentally important genes in the offspring are affected by maternal diabetes. We measured mRNA levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), Bcl-2 associated X protein (Bax), B-cell lymphoma protein (Bcl-2), tumor suppressor protein-53 (p53), paired box protein-3 (Pax-3) and vascular endothelial growth factor-A (Vegf-A). Moreover, we studied the effect on uterine blood flow (TPU) and the expression of the genes exerted by embryonic maldevelopment (malformation or resorption). Streptozotocin induced diabetic (D) and non-diabetic (N) pregnant rats were used in the study. Blood flow (TPU) to implantation sites was measured by a laser Doppler flow meter, and gene expression was analyzed by RT-PCR. Maternal diabetes caused increased blood flow (TPU) to implantation sites compared with normal pregnancy. Furthermore, implantation sites of D rats containing malformed offspring showed impaired growth and decreased blood flow (TPU) compared with their littermates at all gestational days. Resorbed offspring from both N and D rats displayed increased blood flow (TPU) compared with their non-resorbed littermates. Moreover, we found that maternal diabetes causes decreased expression of genes involved in the oxidative stress defense system (CuZnSOD in non-malformed D11 embryos, MnSOD at all gestational time points, ECSOD and Gpx-1 at GD11-GD15, CAT and Gpx-2 at GD15), decreased expression of Pax-3 at GD11, and increased expression of Vegf-A at all gestational time points. We conclude that both maternal metabolism and embryonic developmental state affect the blood flow (TPU) to the implantation site. Maternal diabetes causes decreased expression of anti-oxidative enzymes and enhanced angiogenesis in the offspring in rats.

RGD Manual Disease Annotations    Click to see Annotation Detail View
TermQualifierEvidenceWithReferenceNotesSourceOriginal Reference(s)
Experimental Diabetes Mellitus  ISOGpx1 (Rattus norvegicus)2306607; 2306607 RGD 
Experimental Diabetes Mellitus  IEP 2306607 RGD 

Objects Annotated

Genes (Rattus norvegicus)
Gpx1  (glutathione peroxidase 1)

Genes (Mus musculus)
Gpx1  (glutathione peroxidase 1)

Genes (Homo sapiens)
GPX1  (glutathione peroxidase 1)


Additional Information